Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Differential expression of guanine nucleotide-binding proteins enhances cAMP synthesis in regenerating rat liver.
A M Diehl, … , D Wolfgang, G Wand
A M Diehl, … , D Wolfgang, G Wand
Published June 1, 1992
Citation Information: J Clin Invest. 1992;89(6):1706-1712. https://doi.org/10.1172/JCI115771.
View: Text | PDF
Category: Research Article

Differential expression of guanine nucleotide-binding proteins enhances cAMP synthesis in regenerating rat liver.

  • Text
  • PDF
Abstract

Events leading to cAMP accumulation after partial hepatectomy (PH) and effects of cAMP on hormonal induction of DNA synthesis in hepatocytes were characterized. Hepatic cAMP peaked biphasically post-PH and paralleled changes in adenylyl cyclase activity. Fluctuations in cyclase activity were not explained by variations in glucagon receptor kinetics, but reflected altered G-protein expression. Membrane levels of the stimulatory G-protein, Gs alpha, increased early after PH and were sustained. Levels of the inhibitory G-protein, Gi2 alpha, increased more slowly, peaked later, and quickly fell. Levels of both G-proteins correlated poorly with levels of their mRNAs, suggesting posttranscriptional factors modify their membrane concentrations. When growth factor-induced DNA synthesis was compared in hepatocyte cultures grown with or without agents that increase intracellular cAMP, DNA synthesis was inhibited by sustained high levels of cAMP but was enhanced when high cAMP levels fell. In both regenerating liver and hepatocyte cultures, the expression of a "differentiated" hepatocyte gene, phosphoenolpyruvate carboxykinase, correlated with elevated cAMP levels. These data suggest that the differential expression of G-proteins integrates signals initiated by several growth factors so that the accumulation of cAMP is tightly regulated post-PH. The ensuing variations in cAMP levels modulate both growth and differentiated functions during liver regeneration.

Authors

A M Diehl, S Q Yang, D Wolfgang, G Wand

×

Full Text PDF | Download (1.53 MB)

Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts