Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria.
W Lewis, … , A Chomyn, T Papoian
W Lewis, … , A Chomyn, T Papoian
Published April 1, 1992
Citation Information: J Clin Invest. 1992;89(4):1354-1360. https://doi.org/10.1172/JCI115722.
View: Text | PDF
Research Article

Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria.

  • Text
  • PDF
Abstract

Zidovudine (AZT) inhibits HIV-1 replication in AIDS. A limiting side effect is AZT-induced toxic myopathy. Molecular changes in a rat model of AZT-induced toxic myopathy in vivo helped define pathogenetic molecular, biochemical, and ultrastructural toxic events in skeletal muscle and supported clinical and in vitro findings. After 35 d of AZT treatment, selective changes in rat striated muscle were localized ultrastructurally to mitochondria, and included swelling, cristae disruption, and myelin figures. Decreased muscle mitochondrial (mt) DNA, mtRNA, and decreased mitochondrial polypeptide synthesis in vitro were found in parallel. Mitochondrial molecular changes occurred in absence of altered abundance of cytosolic glyceraldehyde-3-phosphate dehydrogenase, or sarcomeric mitochondrial creatine kinase mRNAs. Quadriceps mitochondrial DNA polymerase gamma activity was similar in both AZT-treated and control rats. In vivo findings with rats support the hypothesis that AZT-induced inhibition of mtDNA replication has an effect of depressing the abundance of striated muscle mtDNA, mtRNA, and mitochondrial polypeptide synthesis. This experimental approach may be useful to examine mitochondrial or toxic myopathies.

Authors

W Lewis, B Gonzalez, A Chomyn, T Papoian

×

Full Text PDF

Download PDF (3.14 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts