Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Effect of acute changes in glomerular filtration rate on Na+/H+ exchange in rat renal cortex.
D A Maddox, … , W D Barnes, F J Gennari
D A Maddox, … , W D Barnes, F J Gennari
Published April 1, 1992
Citation Information: J Clin Invest. 1992;89(4):1296-1303. https://doi.org/10.1172/JCI115715.
View: Text | PDF
Research Article

Effect of acute changes in glomerular filtration rate on Na+/H+ exchange in rat renal cortex.

  • Text
  • PDF
Abstract

Studies were undertaken in Munich-Wistar rats to assess the influence of changes in filtered bicarbonate (FLHCO3), induced by changes in GFR, on Na+/H+ exchange activity in renal brush border membrane vesicles (BBMV). Whole-kidney and micropuncture measurements of GFR, FLHCO3, and whole-kidney and proximal tubule HCO3 reabsorption (APRHCO3) were coupled with BBMV measurements of H+ gradient-driven 22Na+ uptake in each animal studied. 22Na+ uptake was measured at three Na+ concentration gradients to allow calculation of Vmax and Km for Na+/H+ exchange. GFR was varied by studying animals under conditions of hydropenia, plasma repletion, and acute plasma expansion. The increase in GFR, FLHCO3, and APRHCO3 induced by plasma administration correlated directly with an increase in the Vmax for Na+/H+ exchange in BBMV. The Km for sodium was unaffected. In the plasma-expanded rats, the Vmax for Na+/H+ exchange was 22% greater than in the hydropenic rats (P less than 0.025) whereas APRHCO3 was 86% greater (P less than 0.001). These results indicate that increases in FLHCO3, induced by acute increases in GFR, stimulate Na+/H+ exchange activity in proximal tubular epithelium. This stimulation is a mechanism which can, in part, account for the delivery dependence of proximal bicarbonate reabsorption.

Authors

D A Maddox, S M Fortin, A Tartini, W D Barnes, F J Gennari

×

Full Text PDF

Download PDF (1.46 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts