Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Association of polar amino acids at position 26 of the HLA-DQB1 first domain with the anticentromere autoantibody response in systemic sclerosis (scleroderma).
J D Reveille, … , R A Isern, F C Arnett
J D Reveille, … , R A Isern, F C Arnett
Published April 1, 1992
Citation Information: J Clin Invest. 1992;89(4):1208-1213. https://doi.org/10.1172/JCI115704.
View: Text | PDF
Research Article

Association of polar amino acids at position 26 of the HLA-DQB1 first domain with the anticentromere autoantibody response in systemic sclerosis (scleroderma).

  • Text
  • PDF
Abstract

HLA class II alleles (detected by DNA typing) were determined in 116 Caucasians with systemic sclerosis positive and negative for anticentromere autoantibodies (ACA). Significantly increased frequencies of HLA-DR5(DRw11) (P = 0.009) and the Dw13(DRB1*0403, *0407) subtypes of DR4 (probability corrected, Pc = 0.005) were seen in ACA positive patients, and HLA-DR1 and DRw8 were also increased. These findings appeared to reflect linkage disequilibrium of DR5(DRw11) and many DR4(Dw13) haplotypes with HLA-DQw7 and DR1 with DQw5. In fact, the presence of a DQB1 allele having a polar glycine or tyrosine at position 26 of the DQB1 first domain versus a hydrophobic leucine accounted for 100% of ACA positive Caucasian systemic sclerosis patients compared to 69% of the ACA negative SS patients (P = 0.0008) and 71% of Caucasian controls (P = 0.0003) as well as all 7 ACA patients of non-Caucasian background. Furthermore, the genotype frequency of DQB1 alleles lacking leucine at position 26 was 73% in ACA positive SS patients, compared to 42% of ACA negative patients (P = 1.2 x 10(-5)) and 38% of controls (P = 5.8 x 10(-7)). These data, then, suggest that the second hypervariable region of the HLA-DQB1 chain may form the candidate epitope associated with the ACA response.

Authors

J D Reveille, D Owerbach, R Goldstein, R Moreda, R A Isern, F C Arnett

×

Full Text PDF

Download PDF (1.37 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts