Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Defective insulin response of phosphorylase phosphatase in insulin-resistant humans.
Y Kida, … , J Sommercorn, D M Mott
Y Kida, … , J Sommercorn, D M Mott
Published February 1, 1992
Citation Information: J Clin Invest. 1992;89(2):610-617. https://doi.org/10.1172/JCI115627.
View: Text | PDF
Research Article

Defective insulin response of phosphorylase phosphatase in insulin-resistant humans.

  • Text
  • PDF
Abstract

Insulin-stimulated glycogen synthase activity in human muscle is reduced in insulin-resistant subjects. Insulin regulation of human muscle glycogen synthase may require activation of a type-1 protein phosphatase (PP-1). We investigated the change of phosphorylase phosphatase and glycogen synthase activities in muscle biopsies obtained during a 2-h hyperinsulinemic euglycemic clamp in 12 insulin-sensitive (group S) and 8 insulin-resistant (group R) subjects. Fasting phosphorylase phosphatase activity was lower in group R than in group S, and did not increase significantly with insulin infusion in group R until 20 min. In group S, phosphorylase phosphatase was significantly stimulated by 10 min, remaining significantly higher than in group R at all time points. The insulin-mediated changes in phosphatase activities were not decreased by 3 nM okadaic acid but were completely inhibited by 1 microM okadaic acid, thereby verifying that insulin-stimulated phosphorylase phosphatase is accounted for by a PP-1. Subcellular fractionation demonstrated reduced fasting PP-1 activities in both the glycogen and cytosolic fractions of muscle obtained from subjects in group R compared to those in group S. These results suggest that insulin activation of PP-1 could contribute to the stimulation of glycogen synthase by this hormone in human muscle. Lower fasting PP-1 activity in cytosol and glycogen fractions plus lower insulin-stimulated PP-1 activity could explain, in part, reduced insulin-stimulated glycogen synthase in skeletal muscle of insulin-resistant subjects.

Authors

Y Kida, I Raz, R Maeda, B L Nyomba, K Stone, C Bogardus, J Sommercorn, D M Mott

×

Full Text PDF | Download (1.50 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts