Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Human cytomegalovirus-stimulated peripheral blood mononuclear cells induce HIV-1 replication via a tumor necrosis factor-alpha-mediated mechanism.
P K Peterson, … , H H Balfour Jr, J Verhoef
P K Peterson, … , H H Balfour Jr, J Verhoef
Published February 1, 1992
Citation Information: J Clin Invest. 1992;89(2):574-580. https://doi.org/10.1172/JCI115623.
View: Text | PDF
Research Article

Human cytomegalovirus-stimulated peripheral blood mononuclear cells induce HIV-1 replication via a tumor necrosis factor-alpha-mediated mechanism.

  • Text
  • PDF
Abstract

Human cytomegalovirus (HCMV) is a potential cofactor in HIV-1 infection. To investigate the mechanism whereby HCMV promotes HIV-1 replication, a PBMC coculture assay which measures HIV-1 p24 antigen release was used as an index of viral replication. HCMV-stimulated PBMC were capable of inducing HIV-1 replication in cocultures with acutely infected PBMC; however, this occurred only when the PBMC were from HCMV-seropositive donors (598 +/- 207 versus 27 +/- 10 pg/ml p24 antigen with PBMC from HCMV-seronegative donors on day 6 of coculture). Upon stimulation with HCMV, PBMC obtained exclusively from HCMV-seropositive donors released tumor necrosis factor (TNF)-alpha (270 +/- 79 pg/ml at 18 h of culture). Monoclonal antibodies to TNF-alpha blocked the activity of HCMV-stimulated PBMC in cocultures both with acutely HIV-1-infected PBMC and with the chronically infected promonocytic line U1. Also, treatment of HCMV-stimulated PBMC with pentoxifylline, an inhibitor of TNF-alpha mRNA, markedly reduced HIV-1 replication in cocultures both with acutely and chronically infected cells. These results indicate that TNF-alpha is a key mediator of HIV-1 replication induced by HCMV-stimulated PBMC and support the concept that this cytokine plays an important role in the pathogenesis of HIV-1 infection.

Authors

P K Peterson, G Gekker, C C Chao, S X Hu, C Edelman, H H Balfour Jr, J Verhoef

×

Usage data is cumulative from March 2020 through March 2021.

Usage JCI PMC
Text version 973 27
PDF 5 0
Scanned page 1 15
Citation downloads 1 0
Totals 980 42
Total Views 1,022
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts