Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Isoprenoid metabolism is required for stimulation of the respiratory burst oxidase of HL-60 cells.
G M Bokoch, V Prossnitz
G M Bokoch, V Prossnitz
Published February 1, 1992
Citation Information: J Clin Invest. 1992;89(2):402-408. https://doi.org/10.1172/JCI115599.
View: Text | PDF
Research Article

Isoprenoid metabolism is required for stimulation of the respiratory burst oxidase of HL-60 cells.

  • Text
  • PDF
Abstract

The formation of oxygen radicals by phagocytic cells occurs through the activation of a multiple-component NADPH oxidase system. An unidentified low molecular weight GTP-binding protein has been proposed to modulate the activity of the NADPH oxidase. The low molecular weight GTP-binding proteins undergo posttranslational processing, including an initial covalent incorporation of an isoprenyl group. To test whether such an isoprenylation reaction might be required for the activity of the oxidase, we utilized compactin and lovastatin as inhibitors of the isoprenylation pathway. Treatment of DMSO-differentiated HL-60 cells with compactin produced a concentration-dependent inhibition of O2- formation in response to FMLP or phorbol myristate acetate. Cell viability was not affected nor was normal differentiation of the HL-60 cells into a neutrophil-like cell. The inhibitory effect of compactin was specifically prevented by addition of exogenous mevalonic acid to the HL-60 cells, indicating that the inhibitory effects of the drug were due to blockade of the pathway leading to isoprenoid synthesis. Addition of cholesterol, ubiquinone, or dolichol, which are also downstream products of the isoprenoid pathway, did not override the inhibitory effects of the drug. Subcellular fractions were prepared from compactin-treated cells, and the location of the compactin-sensitive factor was determined by complementation analysis in a cell-free NADPH oxidase system. The inhibited factor was localized to the HL-60 cytosol. These data suggest that an isoprenoid pathway intermediate is necessary for activation of the phagocyte NADPH oxidase. This is likely to represent the requirement for an isoprenoid moiety in the posttranslational modification of a low molecular weight GTP-binding protein. Our studies provide support for the involvement of such a low molecular weight GTP-binding protein in NADPH oxidase activation.

Authors

G M Bokoch, V Prossnitz

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 154 0
PDF 45 16
Figure 0 2
Scanned page 260 6
Citation downloads 55 0
Totals 514 24
Total Views 538
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts