Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115473

Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction.

C A Parkos, C Delp, M A Arnaout, and J L Madara

Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Parkos, C. in: PubMed | Google Scholar

Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Delp, C. in: PubMed | Google Scholar

Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Arnaout, M. in: PubMed | Google Scholar

Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Madara, J. in: PubMed | Google Scholar

Published November 1, 1991 - More info

Published in Volume 88, Issue 5 on November 1, 1991
J Clin Invest. 1991;88(5):1605–1612. https://doi.org/10.1172/JCI115473.
© 1991 The American Society for Clinical Investigation
Published November 1, 1991 - Version history
View PDF
Abstract

Neutrophils (PMN) migrate across intestinal epithelia in many disease states. Although such migration serves as a histological index of disease activity, little is known concerning the molecular events underlying PMN-intestinal epithelial interactions. We have studied chemotactic peptide-driven movement of PMN across cultured monolayers of the human intestinal epithelial cell line T84. Using a transmigration microassay, we show that both the decreased transepithelial resistance (76 +/- 3%) and transmigration (4 +/- 0.6 x 10(5) PMN.cm-2, when PMN applied at 6 x 10(6).cm-2) are largely prevented by MAbs which recognize either subunit of the PMN surface heterodimeric adhesion glycoprotein, CD11b/CD18. In contrast, such PMN-epithelial interactions are unaffected by MAbs recognizing either of the remaining two alpha subunits CD11a or CD11c. PMN from a leukocyte adherence deficiency patient also failed to migrate across epithelial monolayers thus confirming a requirement for CD11/18 integrins. By modifying our microassay, we were able to assess PMN transmigration across T84 monolayers in the physiological direction (which, for technical reasons, has not been studied in epithelia): transmigration was again largely attenuated by MAb to CD18 or CD11b (86 +/- 2% and 73 +/- 3% inhibition, respectively) but was unaffected by MAb to CD11a, CD11c. For standard conditions of PMN density, PMN transmigration in the physiological direction was 5-20 times more efficient than in the routinely studied opposite direction.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1605
page 1605
icon of scanned page 1606
page 1606
icon of scanned page 1607
page 1607
icon of scanned page 1608
page 1608
icon of scanned page 1609
page 1609
icon of scanned page 1610
page 1610
icon of scanned page 1611
page 1611
icon of scanned page 1612
page 1612
Version history
  • Version 1 (November 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts