Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115430

Glycochenodeoxycholic acid inhibits calcium phosphate precipitation in vitro by preventing the transformation of amorphous calcium phosphate to calcium hydroxyapatite.

S M Qiu, G Wen, N Hirakawa, R D Soloway, N K Hong, and R S Crowther

Department of Internal Medicine, University of Texas Medical Branch, Galveston 77550.

Find articles by Qiu, S. in: PubMed | Google Scholar

Department of Internal Medicine, University of Texas Medical Branch, Galveston 77550.

Find articles by Wen, G. in: PubMed | Google Scholar

Department of Internal Medicine, University of Texas Medical Branch, Galveston 77550.

Find articles by Hirakawa, N. in: PubMed | Google Scholar

Department of Internal Medicine, University of Texas Medical Branch, Galveston 77550.

Find articles by Soloway, R. in: PubMed | Google Scholar

Department of Internal Medicine, University of Texas Medical Branch, Galveston 77550.

Find articles by Hong, N. in: PubMed | Google Scholar

Department of Internal Medicine, University of Texas Medical Branch, Galveston 77550.

Find articles by Crowther, R. in: PubMed | Google Scholar

Published October 1, 1991 - More info

Published in Volume 88, Issue 4 on October 1, 1991
J Clin Invest. 1991;88(4):1265–1271. https://doi.org/10.1172/JCI115430.
© 1991 The American Society for Clinical Investigation
Published October 1, 1991 - Version history
View PDF
Abstract

Calcium hydroxyapatite can be a significant component of black pigment gallstones. Diverse molecules that bind calcium phosphate inhibit hydroxyapatite precipitation. Because glycine-conjugated bile acids, but not their taurine counterparts, bind calcium phosphate, we studied whether glycochenodeoxycholic acid inhibits calcium hydroxyapatite formation. Glycochenodeoxycholic acid (2 mM) totally inhibited transformation of amorphous calcium phosphate microprecipitates to macroscopic crystalline calcium hydroxyapatite. This inhibition was not mediated by decreased Ca2+ activity. Taurocholic acid (2-12 mM) did not affect hydroxyapatite formation, but antagonized glycochenodeoxycholic acid. Both amorphous and crystalline precipitates contained a surface fraction relatively rich in phosphate. The surface phosphate content was diminish by increasing glycochenodeoxycholic acid concentrations, and this relationship was interpreted as competition between bile acid and HPO4(-4) for binding sites on the calcium phosphate surface. A phosphate-rich crystal surface was associated with rapid transition from amorphous to crystalline states. These results indicate that glycochenodeoxycholic acid prevents transformation of amorphous calcium phosphate to crystalline hydroxyapatite by competitively inhibiting the accumulation of phosphate on the crystal embryo surface.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1265
page 1265
icon of scanned page 1266
page 1266
icon of scanned page 1267
page 1267
icon of scanned page 1268
page 1268
icon of scanned page 1269
page 1269
icon of scanned page 1270
page 1270
icon of scanned page 1271
page 1271
Version history
  • Version 1 (October 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts