Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Insulin attenuates vasopressin-induced calcium transients and a voltage-dependent calcium response in rat vascular smooth muscle cells.
P R Standley, … , M B Zemel, J R Sowers
P R Standley, … , M B Zemel, J R Sowers
Published October 1, 1991
Citation Information: J Clin Invest. 1991;88(4):1230-1236. https://doi.org/10.1172/JCI115426.
View: Text | PDF
Research Article

Insulin attenuates vasopressin-induced calcium transients and a voltage-dependent calcium response in rat vascular smooth muscle cells.

  • Text
  • PDF
Abstract

Insulin attenuates the contractile responses of vascular smooth muscle (VSM) to various agonists. Insulinopenic and insulin-resistant rats lack this normal attenuation of vascular contractile responses. To study this attenuating mechanism, the effects of insulin on calcium (Ca2+) responses of cultured VSM cells (a7r5) to arginine vasopressin (AVP) and membrane potential were investigated. Insulin (1 and 100 mU/ml) shifted AVP dose-response curves to the right, reducing relative potency of AVP by 16-fold and 220-fold, respectively. Responses to AVP were significantly attenuated within 30 min of insulin application. The AVP-elicited rise in [Ca2+]i was partially dependent upon extracellular Ca2+. AVP-elicited inward current was reduced by 90 min of insulin treatment (100 mU/ml), from a peak current of -103 +/- 27 pA (normal) to -37 +/- 15 pA (insulin treated). Peak voltage-dependent Ca(2+)-dependent inward current was unaffected by insulin; however, the current-voltage curve was shifted 16 +/-3 mV to the right by insulin. Thus, insulin may reduce VSM contractile responses by attenuating agonist-mediated rises in [Ca2+]i mediated, in part, by reductions in Ca2+ influx through both receptor- and voltage-operated channels.

Authors

P R Standley, F Zhang, J L Ram, M B Zemel, J R Sowers

×

Full Text PDF

Download PDF (1.40 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts