Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115384

Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans.

P De Feo, M G Gaisano, and M W Haymond

Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905.

Find articles by De Feo, P. in: PubMed | Google Scholar

Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905.

Find articles by Gaisano, M. in: PubMed | Google Scholar

Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905.

Find articles by Haymond, M. in: PubMed | Google Scholar

Published September 1, 1991 - More info

Published in Volume 88, Issue 3 on September 1, 1991
J Clin Invest. 1991;88(3):833–840. https://doi.org/10.1172/JCI115384.
© 1991 The American Society for Clinical Investigation
Published September 1, 1991 - Version history
View PDF
Abstract

Insulin deficiency decreases tissue protein synthesis, albumin mRNA concentration, and albumin synthesis in rats. In contrast, insulin deficiency does not change, or, paradoxically, increases estimates of whole body protein synthesis in humans. To determine if such estimates of whole body protein synthesis could obscure potential differential effects of insulin on the synthetic rates of individual proteins, we determined whole body protein synthesis and albumin and fibrinogen fractional synthetic rates using 5-h simultaneous infusions of [14C]leucine and [13C]bicarbonate, in six type 1 diabetics during a continuous i.v. insulin infusion (to maintain euglycemia) and after short-term insulin withdrawal (12 +/- 2 h). Insulin withdrawal increased (P less than 0.03) whole body proteolysis by approximately 35% and leucine oxidation by approximately 100%, but did not change 13CO2 recovery from NaH13CO3 or estimates of whole body protein synthesis (P = 0.21). Insulin deficiency was associated with a 29% decrease (P less than 0.03) in the albumin fractional synthetic rate but a 50% increase (P less than 0.03) in that of fibrinogen. These data provide strong evidence that albumin synthesis in humans is an insulin-sensitive process, a conclusion consistent with observations in rats. The increase in fibrinogen synthesis during insulin deficiency most likely reflects an acute phase protein response due to metabolic stress. These data suggest that the absence of changes in whole body protein synthesis after insulin withdrawal is the result of the summation of differential effects of insulin deficiency on the synthesis of specific body proteins.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 833
page 833
icon of scanned page 834
page 834
icon of scanned page 835
page 835
icon of scanned page 836
page 836
icon of scanned page 837
page 837
icon of scanned page 838
page 838
icon of scanned page 839
page 839
icon of scanned page 840
page 840
Version history
  • Version 1 (September 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts