Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115379

Acidic polyamino acids inhibit human eosinophil granule major basic protein toxicity. Evidence of a functional role for ProMBP.

R L Barker, R H Gundel, G J Gleich, J L Checkel, D A Loegering, L R Pease, and K J Hamann

Department of Immunology, Mayo Clinic School, Rochester, Minnesota 55905.

Find articles by Barker, R. in: PubMed | Google Scholar

Department of Immunology, Mayo Clinic School, Rochester, Minnesota 55905.

Find articles by Gundel, R. in: PubMed | Google Scholar

Department of Immunology, Mayo Clinic School, Rochester, Minnesota 55905.

Find articles by Gleich, G. in: PubMed | Google Scholar

Department of Immunology, Mayo Clinic School, Rochester, Minnesota 55905.

Find articles by Checkel, J. in: PubMed | Google Scholar

Department of Immunology, Mayo Clinic School, Rochester, Minnesota 55905.

Find articles by Loegering, D. in: PubMed | Google Scholar

Department of Immunology, Mayo Clinic School, Rochester, Minnesota 55905.

Find articles by Pease, L. in: PubMed | Google Scholar

Department of Immunology, Mayo Clinic School, Rochester, Minnesota 55905.

Find articles by Hamann, K. in: PubMed | Google Scholar

Published September 1, 1991 - More info

Published in Volume 88, Issue 3 on September 1, 1991
J Clin Invest. 1991;88(3):798–805. https://doi.org/10.1172/JCI115379.
© 1991 The American Society for Clinical Investigation
Published September 1, 1991 - Version history
View PDF
Abstract

Eosinophil granule major basic protein (MBP), a potent toxin for helminths and mammalian cells in vitro, is a single polypeptide chain rich in arginine. MBP has been localized on damaged helminths and tissues in hypersensitivity diseases including bronchial asthma. The MBP cDNA indicates that MBP is translated as a slightly acidic preproprotein with an acidic propart. To test the hypothesis that the acidic pro-part of proMBP inhibits the toxicity of mature MBP, acidic polyamino acids (aa) were used as antagonists of MBP toxicity to K562 cells and guinea pig tracheal epithelium and used as antagonists of MBP airway hyperresponsiveness in primates. The acidic poly aa inhibited MBP toxicity and MBP airway hyperresposiveness. The acidic poly aa inhibited MBP toxicity in a charge-dependent manner similar to that proposed for proMBP, suggesting that the acidic pro-part of proMBP functions to mask mature MBP toxicity. This inhibition was not limited to MBP, but also applied to polyarginine and eosinophil cationic protein. These acidic poly aa may be useful to inhibit the actions of a number of cationic toxins released by the eosinophil in numerous hypersensitivity diseases.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 798
page 798
icon of scanned page 799
page 799
icon of scanned page 800
page 800
icon of scanned page 801
page 801
icon of scanned page 802
page 802
icon of scanned page 803
page 803
icon of scanned page 804
page 804
icon of scanned page 805
page 805
Version history
  • Version 1 (September 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts