Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115376

Heterogeneity of plasma von Willebrand factor multimers resulting from proteolysis of the constituent subunit.

J A Dent, M Galbusera, and Z M Ruggeri

Roon Research Center for Arteriosclerosis and Thrombosis, Scripps Clinic, La Jolla, California 92037.

Find articles by Dent, J. in: PubMed | Google Scholar

Roon Research Center for Arteriosclerosis and Thrombosis, Scripps Clinic, La Jolla, California 92037.

Find articles by Galbusera, M. in: PubMed | Google Scholar

Roon Research Center for Arteriosclerosis and Thrombosis, Scripps Clinic, La Jolla, California 92037.

Find articles by Ruggeri, Z. in: PubMed | Google Scholar

Published September 1, 1991 - More info

Published in Volume 88, Issue 3 on September 1, 1991
J Clin Invest. 1991;88(3):774–782. https://doi.org/10.1172/JCI115376.
© 1991 The American Society for Clinical Investigation
Published September 1, 1991 - Version history
View PDF
Abstract

In this report we demonstrate that proteolytic cleavage of the constituent subunit is one of the causes determining the heterogeneous size distribution of plasma von Willebrand factor (vWf) multimers. As shown by two-dimensional nonreduced/reduced agarose/polyacrylamide gel electrophoresis, the structure of circulating vWf molecules may deviate from that represented by assemblage of a variable number of identical subunits. Indeed, even though the largest multimers in normal plasma appear to be composed predominantly of intact 225-kD subunits, those of intermediate and smaller size contain also 189-, 176-, and 140-kD proteolytic fragments. Different subunit composition patterns are repeated regularly in multimers of increasing molecular mass, yielding series of bands with similar structure. One of these series consists of molecules without evidence of proteolytic fragmentation, and its smallest member appears to be a dimer of 225-kD subunits. Type IIA von Willebrand disease, characterized by absence of the largest multimers, displays a pattern wherein the fragments of 176 and 140 kD are relatively increased, that of 189 kD is markedly decreased or absent, but the composition of individual multimers is otherwise similar to that of species seen also in normal plasma. In contrast to those in the circulation, all normal platelet vWf multimers contain only intact subunit. These results suggest that proteolytic cleavage of plasma vWf subunits occurs after release from cellular sites, whereas platelet vWf stored in alpha-granules is protected from proteolysis. These findings provide information that may be relevant for understanding the normal processing of vWf multimers and for elucidating the pathogenesis of some of the congenital and acquired structural abnormalities of this molecule.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 774
page 774
icon of scanned page 775
page 775
icon of scanned page 776
page 776
icon of scanned page 777
page 777
icon of scanned page 778
page 778
icon of scanned page 779
page 779
icon of scanned page 780
page 780
icon of scanned page 781
page 781
icon of scanned page 782
page 782
Version history
  • Version 1 (September 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts