Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Three-dimensional characterization of human ventricular myofiber architecture by ultrasonic backscatter.
S A Wickline, … , E D Verdonk, J G Miller
S A Wickline, … , E D Verdonk, J G Miller
Published August 1, 1991
Citation Information: J Clin Invest. 1991;88(2):438-446. https://doi.org/10.1172/JCI115323.
View: Text | PDF
Research Article

Three-dimensional characterization of human ventricular myofiber architecture by ultrasonic backscatter.

  • Text
  • PDF
Abstract

Normal human left ventricular architecture comprises a highly aligned array of cardiac myofibers whose orientation depends on transmural location. This study was designed to determine whether measurement of integrated backscatter could be used detect the progressive transmural shift of myofiber alignment that occurs from epicardium to endocardium in human ventricular wall segments. Integrated backscatter was measured at 32 transmural levels in seven cylindrical biopsy specimens (1.4 cm diam) sampled from normal regions of six explanted fixed human hearts by insonification of samples at 180 independent angles in 2 degrees steps around their entire circumference with a 5-MHz broadband piezoelectric transducer. Histologic analysis was performed to determine fiber orientation. Integrated backscatter varied approximately as a sinusoidal function of the angle of insonification at each transmural level. Greater integrated backscatter was observed for insonification perpendicular as compared with parallel to fibers (difference = 14.5 +/- 0.6 dB). Ultrasonic analysis revealed a progressive transmural shift in fiber orientation of approximately 9.2 +/- 0.7 degrees/mm of tissue. Histologic analysis revealed a concordant shift in fiber orientation of 7.9 +/- 0.8 degrees/mm of tissue. Thus, human myocardium manifests anisotropy of ultrasonic scattering that may be useful for characterization of the intramural fiber alignment and overall three-dimensional organization of cardiac myofibers.

Authors

S A Wickline, E D Verdonk, J G Miller

×

Full Text PDF

Download PDF (2.57 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts