Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115318

Pneumocystis carinii attachment to cultured lung cells by pneumocystis gp 120, a fibronectin binding protein.

S T Pottratz, J Paulsrud, J S Smith, and W J Martin 2nd

Department of Internal Medicine, Indiana University School of Medicine, Indianapolis 46202.

Find articles by Pottratz, S. in: PubMed | Google Scholar

Department of Internal Medicine, Indiana University School of Medicine, Indianapolis 46202.

Find articles by Paulsrud, J. in: PubMed | Google Scholar

Department of Internal Medicine, Indiana University School of Medicine, Indianapolis 46202.

Find articles by Smith, J. in: PubMed | Google Scholar

Department of Internal Medicine, Indiana University School of Medicine, Indianapolis 46202.

Find articles by Martin, W. in: PubMed | Google Scholar

Published August 1, 1991 - More info

Published in Volume 88, Issue 2 on August 1, 1991
J Clin Invest. 1991;88(2):403–407. https://doi.org/10.1172/JCI115318.
© 1991 The American Society for Clinical Investigation
Published August 1, 1991 - Version history
View PDF
Abstract

Pneumocystis carinii is an extracellular organism which is thought to require attachment to alveolar epithelial cells for its growth and replication in humans. Fibronectin (Fn) binding to P. carinii is essential for optimal P. carinii attachment. This study demonstrates that gp120, a 110-120-kD membrane glycoprotein on P. carinii, mediates attachment of the organism to cultured lung cells and is the site of Fn binding to P. carinii. A 51Cr-labeled P. carinii binding assay was used to quantify attachment of the organism to the alveolar epithelial cell line A549. Addition of free gp120, purified from whole P. carinii organisms, caused a significant decrease in attachment of P. carinii to A549 cells from 44.2 +/- 5.5% to 22.4 +/- 4.2% (P less than 0.01). Preincubation of the P. carinii organisms with a polyclonal antibody to gp120 also resulted in a marked decrease in P. carinii attachment to A549 cells from 46.8% +/- 5.2% to 21.3 +/- 4.8% (P less than 0.01). Furthermore, addition of free gp120 to P. carinii organisms caused a significant reduction in specific binding of 125I-Fn to P. carinii (from 83.3 +/- 8.5 ng to 47.1 +/- 5.9 ng, P less than 0.01). Similarly, anti-gp 120 antibody decreased specific Fn binding to P. carinii from 74.3 +/- 8.4 ng to 25.5 +/- 5.3 ng (P less than 0.001). Solubilized P. carinii organisms separated by gel electrophoresis and blotted with 125I-Fn demonstrated specific binding of the 125I-Fn to gp120. In addition, a specific anti-beta 1-integrin antiserum reacted with gp120 by Western blot, suggesting structural homology between gp120 and the beta-subunit of integrins. Thus, the data suggest that the P. carinii membrane glycoprotein gp120 functions as a Fn binding protein and is required for optimal P. carinii attachment to alveolar epithelial cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 403
page 403
icon of scanned page 404
page 404
icon of scanned page 405
page 405
icon of scanned page 406
page 406
icon of scanned page 407
page 407
Version history
  • Version 1 (August 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts