Class I antiarrhythmic drugs inhibit the sodium channel by binding to a drug receptor associated with the channel. In this report we show that in vivo administration of the class I antiarrhythmic drug mexiletine to rats induces sodium channel upregulation in isolated cardiac myocytes. The number of sodium channels was assessed with a radioligand assay using the sodium channel-specific toxin [3H]batrachotoxinin benzoate ([3H]BTXB). The administration of mexiletine to rats induced a dose-dependent increase in [3H]BTXB total specific binding (Bmax) on isolated cardiac myocytes. Sodium channel numbers were 15 +/- 5, 29 +/- 9, and 54 +/- 4 fmol/10(5) cells after 3 d treatment with 0, 50 mg/kg per d, and 150 mg/kg per d mexiletine (P less than 0.001, analysis of variance). Sodium channel number increased monoexponentially to a steady-state value within 3 d with a half-time of increase of 1.0 d. After cessation of treatment with mexiletine the number of sodium channels returned to normal within 12 d. Finally, treatment with mexiletine altered only sodium channel number; the Kd for [3H]BTXB and the IC50 for mexiletine were not different for myocytes prepared from control and mexiletine-treated rats.
M Taouis, R S Sheldon, H J Duff
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 102 | 1 |
42 | 11 | |
Scanned page | 126 | 2 |
Citation downloads | 93 | 0 |
Totals | 363 | 14 |
Total Views | 377 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.