Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Upregulation of the rat cardiac sodium channel by in vivo treatment with a class I antiarrhythmic drug.
M Taouis, … , R S Sheldon, H J Duff
M Taouis, … , R S Sheldon, H J Duff
Published August 1, 1991
Citation Information: J Clin Invest. 1991;88(2):375-378. https://doi.org/10.1172/JCI115313.
View: Text | PDF
Research Article

Upregulation of the rat cardiac sodium channel by in vivo treatment with a class I antiarrhythmic drug.

  • Text
  • PDF
Abstract

Class I antiarrhythmic drugs inhibit the sodium channel by binding to a drug receptor associated with the channel. In this report we show that in vivo administration of the class I antiarrhythmic drug mexiletine to rats induces sodium channel upregulation in isolated cardiac myocytes. The number of sodium channels was assessed with a radioligand assay using the sodium channel-specific toxin [3H]batrachotoxinin benzoate ([3H]BTXB). The administration of mexiletine to rats induced a dose-dependent increase in [3H]BTXB total specific binding (Bmax) on isolated cardiac myocytes. Sodium channel numbers were 15 +/- 5, 29 +/- 9, and 54 +/- 4 fmol/10(5) cells after 3 d treatment with 0, 50 mg/kg per d, and 150 mg/kg per d mexiletine (P less than 0.001, analysis of variance). Sodium channel number increased monoexponentially to a steady-state value within 3 d with a half-time of increase of 1.0 d. After cessation of treatment with mexiletine the number of sodium channels returned to normal within 12 d. Finally, treatment with mexiletine altered only sodium channel number; the Kd for [3H]BTXB and the IC50 for mexiletine were not different for myocytes prepared from control and mexiletine-treated rats.

Authors

M Taouis, R S Sheldon, H J Duff

×

Full Text PDF

Download PDF (867.59 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts