Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The spectrum of molecular alterations in the evolution of chronic myelocytic leukemia.
H Ahuja, … , A Foti, M Cline
H Ahuja, … , A Foti, M Cline
Published June 1, 1991
Citation Information: J Clin Invest. 1991;87(6):2042-2047. https://doi.org/10.1172/JCI115234.
View: Text | PDF
Research Article

The spectrum of molecular alterations in the evolution of chronic myelocytic leukemia.

  • Text
  • PDF
Abstract

DNA from 135 patients with chronic myelogenous leukemia (CML) at various clinical stages and Philadelphia (Ph1) chromosome positive acute lymphoblastic leukemia was investigated for alterations in a variety of proto-oncogenes which have been implicated in the evolution of CML from its chronic phase to blast crisis. The most common genetic change found in the evolution of typical Ph1 chromosome positive CML to blast crisis was an alteration of the p53 gene involving either a rearrangement, a deletion, or a point mutation in the coding sequence of the gene. Alterations of the p53 gene were found in the myeloid and the rare megakaryocytic variant of blast crisis but were absent in the lymphoid leukemic transformants. Gross structural alterations were seen in 11 of 54 (20%) of myeloid or unknown phenotypes of blast crisis and in only 1 of 44 chronic phase cases. Eight examples of mutations in the open reading frame of the p53 gene at codons 49, 53, 60, 140, 202, 204, 238, and 239 were observed in blast crisis patients. Mutations in the N-RAS gene were rare in typical blast crisis (2 of 27 cases) but were found in megakaryocytic and Ph1 negative myeloid blast crisis. We concluded that heterogeneous alterations in the p53 gene and occasionally in the N-RAS genes accompany the evolution of chronic phase CML to blast crisis.

Authors

H Ahuja, M Bar-Eli, Z Arlin, S Advani, S L Allen, J Goldman, D Snyder, A Foti, M Cline

×

Full Text PDF

Download PDF (2.00 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts