Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

ATP receptor regulation of adenylate cyclase and protein kinase C activity in cultured renal LLC-PK1 cells.
R J Anderson, … , R Breckon, B S Dixon
R J Anderson, … , R Breckon, B S Dixon
Published May 1, 1991
Citation Information: J Clin Invest. 1991;87(5):1732-1738. https://doi.org/10.1172/JCI115191.
View: Text | PDF
Research Article

ATP receptor regulation of adenylate cyclase and protein kinase C activity in cultured renal LLC-PK1 cells.

  • Text
  • PDF
Abstract

In cultured intact LLC-PK1 renal epithelial cells, a nonhydrolyzable ATP analogue, ATP gamma S, inhibits AVP-stimulated cAMP formation. In LLC-PK1 membranes, several ATP analogues inhibit basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in a dose-dependent manner. The rank order potency of inhibition by ATP analogues suggests that a P2y type of ATP receptor is involved in this inhibition. The compound ATP gamma S inhibits agonist-stimulated adenylate cyclase activity in solubilized and in isobutylmethylxanthine (IBMX) and quinacrine pretreated membranes, suggesting that ATP gamma S inhibition occurs independent of AVP and A1 adenosine receptors and of phospholipase A2 activity. The ATP gamma S inhibition of AVP-stimulated adenylate cyclase activity is not affected by pertussis toxin but is attenuated by GDP beta S, suggesting a possible role for a pertussis toxin insensitive G protein in the inhibition. Exposure of intact LLC-PK cells to ATP gamma S results in a significant increase in protein kinase C activity. However, neither of two protein kinase C inhibitors (staurosporine and H-7) prevents ATP gamma S inhibition of AVP-stimulated adenylate cyclase activity, suggesting that this inhibition occurs by a protein kinase C independent mechanism. These findings suggest the presence of functional P2y purinoceptors coupled to two signal transduction pathways in cultured renal epithelial cells. The effect of P2y purinoceptors to inhibit AVP-stimulated adenylate cyclase activity may be mediated, at least in part, by a pertussis toxin insensitive G protein.

Authors

R J Anderson, R Breckon, B S Dixon

×

Usage data is cumulative from September 2024 through September 2025.

Usage JCI PMC
Text version 98 2
PDF 60 7
Scanned page 179 2
Citation downloads 46 0
Totals 383 11
Total Views 394
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts