Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
ATP receptor regulation of adenylate cyclase and protein kinase C activity in cultured renal LLC-PK1 cells.
R J Anderson, … , R Breckon, B S Dixon
R J Anderson, … , R Breckon, B S Dixon
Published May 1, 1991
Citation Information: J Clin Invest. 1991;87(5):1732-1738. https://doi.org/10.1172/JCI115191.
View: Text | PDF
Research Article

ATP receptor regulation of adenylate cyclase and protein kinase C activity in cultured renal LLC-PK1 cells.

  • Text
  • PDF
Abstract

In cultured intact LLC-PK1 renal epithelial cells, a nonhydrolyzable ATP analogue, ATP gamma S, inhibits AVP-stimulated cAMP formation. In LLC-PK1 membranes, several ATP analogues inhibit basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in a dose-dependent manner. The rank order potency of inhibition by ATP analogues suggests that a P2y type of ATP receptor is involved in this inhibition. The compound ATP gamma S inhibits agonist-stimulated adenylate cyclase activity in solubilized and in isobutylmethylxanthine (IBMX) and quinacrine pretreated membranes, suggesting that ATP gamma S inhibition occurs independent of AVP and A1 adenosine receptors and of phospholipase A2 activity. The ATP gamma S inhibition of AVP-stimulated adenylate cyclase activity is not affected by pertussis toxin but is attenuated by GDP beta S, suggesting a possible role for a pertussis toxin insensitive G protein in the inhibition. Exposure of intact LLC-PK cells to ATP gamma S results in a significant increase in protein kinase C activity. However, neither of two protein kinase C inhibitors (staurosporine and H-7) prevents ATP gamma S inhibition of AVP-stimulated adenylate cyclase activity, suggesting that this inhibition occurs by a protein kinase C independent mechanism. These findings suggest the presence of functional P2y purinoceptors coupled to two signal transduction pathways in cultured renal epithelial cells. The effect of P2y purinoceptors to inhibit AVP-stimulated adenylate cyclase activity may be mediated, at least in part, by a pertussis toxin insensitive G protein.

Authors

R J Anderson, R Breckon, B S Dixon

×

Full Text PDF

Download PDF (1.27 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts