Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

A potential role for guanine nucleotide-binding protein in the regulation of endosomal proton transport.
R W Gurich, … , J Codina, T D DuBose Jr
R W Gurich, … , J Codina, T D DuBose Jr
Published May 1, 1991
Citation Information: J Clin Invest. 1991;87(5):1547-1552. https://doi.org/10.1172/JCI115167.
View: Text | PDF
Research Article

A potential role for guanine nucleotide-binding protein in the regulation of endosomal proton transport.

  • Text
  • PDF
Abstract

The effects of guanosine 5'-triphosphate (GTP) and GTP-gamma-S, known activators of GTP binding proteins, on proton transport were investigated in endosome-enriched vesicles (endosomes). Endosomes were prepared from rabbit renal cortex following the intravenous injection of FITC-dextran. The rate of intravesicular acidification was determined by measuring changes in fluorescence of FITC-dextran. Both GTP and GTP-gamma-S stimulated significantly the initial rate of proton transport. In contrast, GDP-beta-S, which does not activate GTP binding proteins, inhibited proton transport. The rank order of stimulation was GTP-gamma-S greater than GTP greater than control greater than GDP-beta-S. GTP-gamma-S stimulation of proton transport was also observed under conditions in which chloride entry was eliminated, i.e., 0 mM external chloride concentration in the presence of potassium/valinomycin voltage clamping. GTP-gamma-S did not affect proton leak in endosomes as determined by collapse of H+ ATPase-generated pH gradients. ADP ribosylation by treatment of endosomal membranes with pertussis toxin revealed two substrates corresponding to the 39-41 kD region and comigrating with alpha i subunits. Pretreatment of the membranes with pertussis toxin had no effect on proton transport in the absence of GTP or GTP-gamma-S. However, pretreatment with pertussis toxin blocked the stimulation of proton transport by GTP. In contrast, as reported in other membranes by others previously, pertussis toxin did not prevent the stimulation of proton transport by GTP-gamma-S. These findings, taken together, indicate that GTP binding proteins are present in endosomal membranes derived from renal cortex and that activation of G protein by GTP and GTP-gamma-S stimulates proton transport in a rank order identical to that reported for other transport pathways modulated by Gi proteins. Therefore, these studies suggest that G proteins are capable of stimulating the vacuolar H ATPase of endosomes directly.

Authors

R W Gurich, J Codina, T D DuBose Jr

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts