To evaluate ion transport mechanisms in bile duct epithelium (BDE), BDE cells were isolated from bile duct-ligated rats. After short-term culture pHi was measured with a single cell microfluorimetric set-up using the fluorescent pHi indicator BCECF, and calibrated with nigericin in high K+ concentration buffer. Major contaminants were identified using vital markers. In HCO3(-)-free media, baseline pHi (7.03 +/- 0.12) decreased by 0.45 +/- 0.18 pH units after Na+ removal and by 0.12 +/- .04 after amiloride administration (1 mM). After acid loading (20 mM NH4Cl) pHi recovery was inhibited by both Na+ removal and amiloride (JH+ = 0.74 +/- 1.1, and JH+ = 2.28 +/- 0.8, respectively, vs. 5.47 +/- 1.97 and 5.97 +/- 1.76 mM/min, in controls, respectively). In HCO3- containing media baseline pHi was higher (7.16 +/- 0.1, n = 36, P less than 0.05) and was decreased by Na+ substitution but not by amiloride. Na+ removal inhibited pHi recovery after an intracellular acid load (0.27 +/- 0.26, vs. 7.7 +/- 4.1 mM/min, in controls), whereas amiloride reduced JH+ only by 27%. pH recovery was inhibited by DIDS (0.5-1 mM), but not by Cl- depletion. Finally, acute Cl- removal increased pHi by 0.18 pH units in the absence but not presence of DIDS. These data indicate that BDE cells possess mechanisms for Na+/H+ exchange, Na+:HCO3- symport and Cl-/HCO3 exchange. Therefore BDE may be capable of transepithelial H+/HCO3- transport.


M Strazzabosco, A Mennone, J L Boyer


Other pages: