Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Amendment history:
  • Correction (May 1992)

Research Article Free access | 10.1172/JCI115133

Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall.

A J Naftilan, W M Zuo, J Inglefinger, T J Ryan Jr, R E Pratt, and V J Dzau

Division of Cardiovascular Medicine, Stanford University School of Medicine, California 94305-5013.

Find articles by Naftilan, A. in: PubMed | Google Scholar

Division of Cardiovascular Medicine, Stanford University School of Medicine, California 94305-5013.

Find articles by Zuo, W. in: PubMed | Google Scholar

Division of Cardiovascular Medicine, Stanford University School of Medicine, California 94305-5013.

Find articles by Inglefinger, J. in: PubMed | Google Scholar

Division of Cardiovascular Medicine, Stanford University School of Medicine, California 94305-5013.

Find articles by Ryan, T. in: PubMed | Google Scholar

Division of Cardiovascular Medicine, Stanford University School of Medicine, California 94305-5013.

Find articles by Pratt, R. in: PubMed | Google Scholar

Division of Cardiovascular Medicine, Stanford University School of Medicine, California 94305-5013.

Find articles by Dzau, V. in: PubMed | Google Scholar

Published April 1, 1991 - More info

Published in Volume 87, Issue 4 on April 1, 1991
J Clin Invest. 1991;87(4):1300–1311. https://doi.org/10.1172/JCI115133.
© 1991 The American Society for Clinical Investigation
Published April 1, 1991 - Version history
View PDF
Abstract

Recent data demonstrate the existence of a vascular renin angiotensin system. In this study we examine the localization of angiotensinogen mRNA in the blood vessel wall of two rat strains, the Wistar and Wistar Kyoto (WKY), as well as the regulation of vascular angiotensinogen mRNA expression by dietary sodium. Northern blot analysis and in situ hybridization histochemistry demonstrate that in both strains angiotensinogen mRNA is detected in the aortic medial smooth muscle layer as well as the periaortic fat. In WKY rats fed a 1.6% sodium diet, angiotensinogen mRNA concentration is 2.6-fold higher in the periaortic fat than in the smooth muscle, as analyzed by quantitative slot blot hybridization. Angiotensinogen mRNA expression in the medial smooth muscle layer is sodium regulated. After 5 d of a low (0.02%) sodium diet, smooth muscle angiotensinogen mRNA levels increase 3.2-fold (P less than 0.005) as compared with the 1.6% sodium diet. In contrast, angiotensinogen mRNA level in the periaortic fat is not influenced by sodium diet. In summary, our data demonstrate regional (smooth muscle vs. periaortic fat) differential regulation of angiotensinogen mRNA levels in the blood vessel wall by sodium. This regional differential regulation by sodium may have important physiological implications.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1300
page 1300
icon of scanned page 1301
page 1301
icon of scanned page 1302
page 1302
icon of scanned page 1303
page 1303
icon of scanned page 1304
page 1304
icon of scanned page 1305
page 1305
icon of scanned page 1306
page 1306
icon of scanned page 1307
page 1307
icon of scanned page 1308
page 1308
icon of scanned page 1309
page 1309
icon of scanned page 1310
page 1310
icon of scanned page 1311
page 1311
Version history
  • Version 1 (April 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts