Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115116

Serum amyloid A (SAA3) produced by rabbit synovial fibroblasts treated with phorbol esters or interleukin 1 induces synthesis of collagenase and is neutralized with specific antiserum.

T I Mitchell, C I Coon, and C E Brinckerhoff

Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire 03756.

Find articles by Mitchell, T. in: PubMed | Google Scholar

Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire 03756.

Find articles by Coon, C. in: PubMed | Google Scholar

Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire 03756.

Find articles by Brinckerhoff, C. in: PubMed | Google Scholar

Published April 1, 1991 - More info

Published in Volume 87, Issue 4 on April 1, 1991
J Clin Invest. 1991;87(4):1177–1185. https://doi.org/10.1172/JCI115116.
© 1991 The American Society for Clinical Investigation
Published April 1, 1991 - Version history
View PDF
Abstract

We report that nucleic acid sequence analysis of a full-length cDNA clone for a rabbit serum amyloid A (SAA)-like protein has identified this protein as more closely related to SAA3 than to SAA1. SAA3 induced collagenase synthesis in rabbit synovial fibroblasts, and immune IgG raised against this SAA protein abrogated the induction. Using antisera to immunoprecipitate biosynthetically labeled 3H-SAA and 3H-collagenase from culture medium, we compared the levels of SAA and collagenase synthesized by cultures of rabbit fibroblasts at early passage (passages 3-6) with those synthesized by late passage cells (passage 16). Comparatively high levels of both proteins were produced constitutively by fibroblasts at low passage. With increasing passage, levels of both proteins drop so that by passage 16, constitutive production of SAA and collagenase was only approximately 15-20% that of passage 3 cells. Cells at low passage could be readily stimulated with phorbol myristate acetate (PMA) or interleukin 1 (IL-1) to synthesize increased amounts of both SAA and collagenase. In passage 5 cells treated with PMA, we detected increased SAA mRNA by 1.5 h and collagenase mRNA by 5 h. However, older passage cells were more refractory to stimulation and required longer induction times. We suggest that SAA3 may be expressed by fibroblasts at sites of acute inflammation or injury, and that elevated levels of SAA3 may signify "activated" fibroblasts which are already producing increased amounts of collagenase constitutively and which are predisposed to further stimulation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1177
page 1177
icon of scanned page 1178
page 1178
icon of scanned page 1179
page 1179
icon of scanned page 1180
page 1180
icon of scanned page 1181
page 1181
icon of scanned page 1182
page 1182
icon of scanned page 1183
page 1183
icon of scanned page 1184
page 1184
icon of scanned page 1185
page 1185
Version history
  • Version 1 (April 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts