Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115063

Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis.

R S Bresalier, Y Niv, J C Byrd, Q Y Duh, N W Toribara, R W Rockwell, R Dahiya, and Y S Kim

GI Research Lab VA Medical Center, San Francisco, CA 94121.

Find articles by Bresalier, R. in: PubMed | Google Scholar

GI Research Lab VA Medical Center, San Francisco, CA 94121.

Find articles by Niv, Y. in: PubMed | Google Scholar

GI Research Lab VA Medical Center, San Francisco, CA 94121.

Find articles by Byrd, J. in: PubMed | Google Scholar

GI Research Lab VA Medical Center, San Francisco, CA 94121.

Find articles by Duh, Q. in: PubMed | Google Scholar

GI Research Lab VA Medical Center, San Francisco, CA 94121.

Find articles by Toribara, N. in: PubMed | Google Scholar

GI Research Lab VA Medical Center, San Francisco, CA 94121.

Find articles by Rockwell, R. in: PubMed | Google Scholar

GI Research Lab VA Medical Center, San Francisco, CA 94121.

Find articles by Dahiya, R. in: PubMed | Google Scholar

GI Research Lab VA Medical Center, San Francisco, CA 94121.

Find articles by Kim, Y. in: PubMed | Google Scholar

Published March 1, 1991 - More info

Published in Volume 87, Issue 3 on March 1, 1991
J Clin Invest. 1991;87(3):1037–1045. https://doi.org/10.1172/JCI115063.
© 1991 The American Society for Clinical Investigation
Published March 1, 1991 - Version history
View PDF
Abstract

Patients with mucinous colorectal cancers characteristically present with advanced disease, however, the relationship between mucin production by colon cancer cells and their metastatic potential remains unclear. We therefore sought to define the relationship between mucin production by human colon cancer cells and metastatic ability by employing animal models of colon cancer metastasis. LS LiM 6, a colon carcinoma cell line with high liver metastasizing ability during cecal growth in nude mice produced twofold more metabolically labeled intracellular mucin and secreted four- to fivefold more mucin into the culture medium compared to poorly metastatic parental line LS174T. This was accompanied by a similar elevation in poly(A)+ RNA detected by blot hybridization with a human intestinal mucin cDNA probe, and increases in mucin core carbohydrate antigens determined immunohistochemically. Variants of LS174T selected for high (HM 7) or low (LM 12) mucin synthesizing capacity also yielded metastases after cecal growth and colonized the liver after splenic-portal injection in proportion to their ability to produce mucin. Inhibition of mucin glycosylation by the arylglycoside benzyl-alpha-N-acetyl-galactosamine greatly reduced liver colonization after splenic-portal injection of the tumor cells. These data suggest that mucin production by human colon cancer cells correlates with their metastatic potential and affects their ability to colonize the liver in experimental model systems.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1037
page 1037
icon of scanned page 1038
page 1038
icon of scanned page 1039
page 1039
icon of scanned page 1040
page 1040
icon of scanned page 1041
page 1041
icon of scanned page 1042
page 1042
icon of scanned page 1043
page 1043
icon of scanned page 1044
page 1044
icon of scanned page 1045
page 1045
Version history
  • Version 1 (March 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts