Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115025

Intravenous administration of phosphorylated acid alpha-glucosidase leads to uptake of enzyme in heart and skeletal muscle of mice.

A T Van der Ploeg, M A Kroos, R Willemsen, N H Brons, and A J Reuser

Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands.

Find articles by Van der Ploeg, A. in: JCI | PubMed | Google Scholar

Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands.

Find articles by Kroos, M. in: JCI | PubMed | Google Scholar

Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands.

Find articles by Willemsen, R. in: JCI | PubMed | Google Scholar

Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands.

Find articles by Brons, N. in: JCI | PubMed | Google Scholar

Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands.

Find articles by Reuser, A. in: JCI | PubMed | Google Scholar

Published February 1, 1991 - More info

Published in Volume 87, Issue 2 on February 1, 1991
J Clin Invest. 1991;87(2):513–518. https://doi.org/10.1172/JCI115025.
© 1991 The American Society for Clinical Investigation
Published February 1, 1991 - Version history
View PDF
Abstract

The lysosomal storage disorder glycogenosis type II is caused by acid alpha-glucosidase deficiency. In this study we have investigated the possible applicability of mannose 6-phosphate receptor-mediated enzyme replacement therapy to correct the enzyme deficiency in the most affected tissues. Bovine testes acid alpha-glucosidase containing phosphorylated mannose residues was intravenously administered to mice and found to be taken up by heart (70% increase of activity) and skeletal muscle (43% increase); the major target organs. The uptake of nonphosphorylated human placenta acid alpha-glucosidase by heart and skeletal muscle appeared to be significantly less efficient, whereas uptake of dephosphorylated bovine testes enzyme was not detectable. The phosphorylated bovine testes acid alpha-glucosidase remained present in mouse skeletal muscle up to 9-15 d after administration, with a half-life of 2-4 d. Besides being measured in skeletal muscle and heart, uptake of phosphorylated bovine testes and nonphosphorylated human placenta acid alpha-glucosidase was measured in several other organs, but not in brain. The increase of acid alpha-glucosidase activity was highest in liver and spleen. We concluded that application of mannose 6-phosphate receptor-mediated enzyme replacement therapy may offer new perspectives for treatment of glycogenesis type II.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 513
page 513
icon of scanned page 514
page 514
icon of scanned page 515
page 515
icon of scanned page 516
page 516
icon of scanned page 517
page 517
icon of scanned page 518
page 518
Version history
  • Version 1 (February 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts