Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst.
T J Coffman, … , B L Edeker, B E Britigan
T J Coffman, … , B L Edeker, B E Britigan
Published October 1, 1990
Citation Information: J Clin Invest. 1990;86(4):1030-1037. https://doi.org/10.1172/JCI114805.
View: Text | PDF
Research Article

Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst.

  • Text
  • PDF
Abstract

Tissue injury has been linked to neutrophil associated hydroxyl radical (.OH) generation, a process that requires an exogenous transition metal catalyst such as iron. In vivo most iron is bound in a noncatalytic form. To obtain iron required for growth, many bacteria secrete iron chelators (siderophores). Since Pseudomonas aeruginosa infections are associated with considerable tissue destruction, we examined whether iron bound to the Pseudomonas siderophores pyochelin (PCH) and pyoverdin (PVD) could act as .OH catalysts. Purified PCH and PVD were iron loaded (Fe-PCH, Fe-PVD) and added to a hypoxanthine/xanthine oxidase superoxide- (.O2-) and hydrogen peroxide (H2O2)-generating system. Evidence for .OH generation was then sought using two different spin-trapping agents (5.5 dimethyl-pyrroline-1-oxide or N-t-butyl-alpha-phenylnitrone), as well as the deoxyribose oxidation assay. Regardless of methodology, .OH generation was detected in the presence of Fe-PCH but not Fe-PVD. Inhibition of the process by catalase and/or SOD suggested .OH formation with Fe-PCH occurred via the Haber-Weiss reaction. Similar results were obtained when stimulated neutrophils were used as the source of .O2- and H2O2. Addition of Fe-PCH but not Fe-PVD to stimulated neutrophils yielded .OH as detected by the above assay systems. Since PCH and PVD bind ferric (Fe3+) but not ferrous (Fe2+) iron, .OH catalysis with Fe-PCH would likely involve .O2(-)-mediated reduction of Fe3+ to Fe2+ with subsequent release of "free" Fe2+. This was confirmed by measuring formation of the Fe2(+)-ferrozine complex after exposure of Fe-PCH, but not Fe-PVD, to enzymatically generated .O2-. These data show that Fe-PCH, but not Fe-PVD, is capable of catalyzing generation of .OH. Such a process could represent as yet another mechanism of tissue injury at sites of infection with P. aeruginosa.

Authors

T J Coffman, C D Cox, B L Edeker, B E Britigan

×

Full Text PDF

Download PDF (1.67 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts