Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Enzymolysis of glomerular immune deposits in vivo with dextranase/protease ameliorates proteinuria, hematuria, and mesangial proliferation in murine experimental IgA nephropathy.
L Gesualdo, … , S N Emancipator, M E Lamm
L Gesualdo, … , S N Emancipator, M E Lamm
Published September 1, 1990
Citation Information: J Clin Invest. 1990;86(3):715-722. https://doi.org/10.1172/JCI114767.
View: Text | PDF
Research Article

Enzymolysis of glomerular immune deposits in vivo with dextranase/protease ameliorates proteinuria, hematuria, and mesangial proliferation in murine experimental IgA nephropathy.

  • Text
  • PDF
Abstract

The therapeutic effects of saccharolytic and proteolytic enzymes were investigated in models of IgA nephropathy. Mesangial glomerulonephritis was induced in mice by intravenous injection of preformed soluble immune complexes of dextran sulfate and either IgA (J 558) or IgM (MOPC 104 E) anti-dextran MAb (passive model) or by immunization with DEAE dextran (active model). In the passive model, only 30-40% of dextranase-treated mice given IgA or IgM immune complexes had mesangial Ig or dextran deposits, compared with 100% of saline-treated controls (P less than 0.01). There was no significant difference in mice given only protease. In the active model, dextranase and protease separately each reduced glomerular dextran and C3 deposits, and hematuria (P less than 0.01). Dextranase also reduced the glomerular IgA deposits (20 vs. 100% of saline-treated mice) and the frequency and severity of mesangial matrix expansion (both P less than 0.02), but did not reduce the modest IgG or IgM codeposits. Protease reduced IgG and IgM deposits, proteinuria and mesangial hypercellularity compared with saline (P less than 0.02), but did not diminish IgA, and had no effect on mesangial matrix expansion. The combination of dextranase plus protease attenuated all components of glomerular injury as judged by clinical and pathological parameters, but inactivated dextranase plus inactivated protease had no effect on any parameter. We conclude that enzymatic digestion of antigen and antibody can reduce immune deposits, mesangial proliferation, proteinuria, and hematuria in experimental glomerulonephritis.

Authors

L Gesualdo, S Ricanati, M O Hassan, S N Emancipator, M E Lamm

×

Full Text PDF

Download PDF (2.29 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts