Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Molecular basis of argininemia. Identification of two discrete frame-shift deletions in the liver-type arginase gene.
Y Haraguchi, … , M Mori, I Matsuda
Y Haraguchi, … , M Mori, I Matsuda
Published July 1, 1990
Citation Information: J Clin Invest. 1990;86(1):347-350. https://doi.org/10.1172/JCI114707.
View: Text | PDF
Research Article

Molecular basis of argininemia. Identification of two discrete frame-shift deletions in the liver-type arginase gene.

  • Text
  • PDF
Abstract

Argininemia results from a deficiency of arginase (EC 3.5.3.1), the last enzyme of the urea cycle in the liver. We examined the molecular basis for argininemia by constructing a genomic library followed by cloning and DNA sequencing. Discrete mutations were found on two alleles from the patient, a product of a nonconsanguineous marriage. There was a four-base deletion at protein-coding region 262-265 or 263-266 in exon 3 that would lead to a reading-frame shift after amino acid residue 87 and make a new stop codon at residue 132. The other was a one-base deletion at 77 or 78 in exon 2 that would lead to a reading-frame shift after residue 26 and make a stop codon at residue 31. For confirmation, genomic DNAs from the patient and from her parents were amplified by the polymerase chain reaction method. The patient was shown to be a compound heterozygote, inheriting an allele with the four-base deletion from the father and the other allele with the one-base deletion from the mother. These data seem to be the first evidence of a case of argininemia caused by two different deletion mutations.

Authors

Y Haraguchi, J M Aparicio, M Takiguchi, I Akaboshi, M Yoshino, M Mori, I Matsuda

×

Full Text PDF

Download PDF (1.06 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts