Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Urokinase has direct catalytic activity against fibrinogen and renders it less clottable by thrombin.
J I Weitz, B Leslie
J I Weitz, B Leslie
Published July 1, 1990
Citation Information: J Clin Invest. 1990;86(1):203-212. https://doi.org/10.1172/JCI114685.
View: Text | PDF
Research Article

Urokinase has direct catalytic activity against fibrinogen and renders it less clottable by thrombin.

  • Text
  • PDF
Abstract

Recently, we demonstrated that tissue plasminogen activator directly releases fibrinopeptides A and B (FPA and FPB) from fibrinogen. The purpose of this study was to determine whether urokinase has similar activity. Incubation of urokinase with fibrinogen or heparinized plasma results in concentration-dependent FPB release unaccompanied by FPA cleavage. For equivalent amidolytic activity, high molecular weight urokinase releases twofold more FPB than the low molecular weight species. In contrast, prourokinase does not release FPB until activated to urokinase. Contaminating thrombin or plasma is not responsible for urokinase-mediated FPB release because this activity is unaccompanied by FPA or B beta 1-42 cleavage, and is unaffected by heparin, hirudin, a monospecific antibody against thrombin, aprotinin, or alpha 2-antiplasmin. FPB release reflects a direct action of urokinase on fibrinogen because release is completely inhibited by a monospecific antibody against the enzyme. Further, urokinase releases FPB from the FPB-containing substrate B beta 1-42, thus confirming its specificity for the B beta 14 (Arg)-B beta 15 (Gly) bond. In addition to FPB release, SDS-PAGE analysis of the time course of urokinase-mediated fibrinogenolysis indicates progressive proteolysis of both the A alpha- and B beta-chains of fibrinogen that occurs after FPB release is completed. As a consequence of urokinase-mediated fibrinogenolysis, there is progressive prolongation of the thrombin clotting time. These studies indicate that urokinase has direct catalytic activity against fibrinogen. By releasing FPB, a potent chemoattractant, and by rendering fibrinogen less clottable by thrombin, urokinase may participate in processes extending beyond fibrinolysis.

Authors

J I Weitz, B Leslie

×

Full Text PDF

Download PDF (1.86 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts