Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114657

Reversal of beta-cell suppression in vitro in pancreatic islets isolated from nonobese diabetic mice during the phase preceding insulin-dependent diabetes mellitus.

E Strandell, D L Eizirik, and S Sandler

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Strandell, E. in: PubMed | Google Scholar

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Eizirik, D. in: PubMed | Google Scholar

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Sandler, S. in: PubMed | Google Scholar

Published June 1, 1990 - More info

Published in Volume 85, Issue 6 on June 1, 1990
J Clin Invest. 1990;85(6):1944–1950. https://doi.org/10.1172/JCI114657.
© 1990 The American Society for Clinical Investigation
Published June 1, 1990 - Version history
View PDF
Abstract

Insulin-dependent diabetes mellitus (IDDM) is characterized by a progressive autoimmune destruction of the pancreatic beta-cells. One of the best-suited animal models for IDDM is the nonobese diabetic (NOD) mouse. In this investigation pancreatic islets were isolated from female NOD mice aged 5-7, 8-11, and 12-13 wk and examined immediately (day 0) or after 7 d of culture (day 7). The mice showed a progressive disturbance in glucose tolerance with age, and a correspondingly increased frequency of pancreatic insulitis. Islets isolated from the oldest mice often contained inflammatory cells on day 0, which resulted in an elevated islet DNA content. During culture these islets became depleted of infiltrating cells and the DNA content of the islets decreased on day 7. Islets of the eldest mice failed to respond with insulin secretion to high glucose, whereas a response was observed in the other groups. After culture all groups of islets showed a markedly improved insulin secretion. Islets from the 12-13-wk-old mice displayed a lower glucose oxidation rate at 16.7 mM glucose on day 0 compared with day 7. Islet (pro)insulin and total protein biosynthesis was essentially unaffected. In conclusion, islets obtained from 12-13-wk-old NOD mice exhibit an impaired glucose metabolism, which may explain the suppressed insulin secretion observed immediately after isolation. This inhibition of beta-cell function can be reversed in vitro. Thus, there may be a stage during development of IDDM when beta-cell destruction can be counteracted and beta-cell function restored, provided the immune aggression is arrested.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1944
page 1944
icon of scanned page 1945
page 1945
icon of scanned page 1946
page 1946
icon of scanned page 1947
page 1947
icon of scanned page 1948
page 1948
icon of scanned page 1949
page 1949
icon of scanned page 1950
page 1950
Version history
  • Version 1 (June 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts