Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mechanism of myocardial contractile depression by clinical concentrations of ethanol. A study in ferret papillary muscles.
T Guarnieri, E G Lakatta
T Guarnieri, E G Lakatta
Published May 1, 1990
Citation Information: J Clin Invest. 1990;85(5):1462-1467. https://doi.org/10.1172/JCI114592.
View: Text | PDF
Research Article

Mechanism of myocardial contractile depression by clinical concentrations of ethanol. A study in ferret papillary muscles.

  • Text
  • PDF
Abstract

Moderate alcohol intoxication in man, a ubiqitious social event, causes acute but reversible myocardial depression, the mechanism of which is unknown. We investigated whether this depression could be due to a direct effect of ethanol on the process of electromechanical coupling by simultaneously measuring the transmembrane action potential and contraction, or the cytosolic calcium transient (via aequorin photoluminescence) and contraction in isolated ferret right ventricular papillary muscle. Ethanol, in concentrations that are similar to plasma levels in man during intoxication (0.15 vol %), depressed the force of contraction approximately 10%. The step in the electromechanical process that was affected appeared to be the calcium-myofilament interaction, as there was no change in the transmembrane action potential or cytosolic calcium transient. This inhibition was quickly reversed by removal of the ethanol from the perfusate. On the other hand, higher concentrations of ethanol produced changes in contraction, the calcium transient, and the action potential, suggesting multiple levels of inhibition of electromechanical coupling. Increasing the perfusate calcium or use of the calcium channel agonist, BAY-K 8644, increased cytosolic calcium to near maximum but had little effect on contractility, confirming that the relationship between calcium and the myofilaments had been altered. These data suggest that the acute depression in ventricular function seen with alcohol consumption may be due to a direct effect on electromechanical coupling through inhibition of the calcium myofilament interaction.

Authors

T Guarnieri, E G Lakatta

×

Full Text PDF

Download PDF (1.04 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts