Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta.
B Tesfamariam, … , D Deykin, R A Cohen
B Tesfamariam, … , D Deykin, R A Cohen
Published March 1, 1990
Citation Information: J Clin Invest. 1990;85(3):929-932. https://doi.org/10.1172/JCI114521.
View: Text | PDF
Research Article

Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta.

  • Text
  • PDF
Abstract

The effects of glucose on endothelium-dependent responses and vasoactive prostanoid production were determined by incubating isolated rabbit aortae in control (5.5 or 11 mM) or elevated (44 mM) glucose for 6 h to mimic euglycemic and hyperglycemic conditions. Rings of aortae incubated in elevated glucose, contracted submaximally by phenylephrine, showed significantly decreased endothelium-dependent relaxations induced by acetylcholine compared with the aortae incubated in control glucose. Treatment with indomethacin, a cyclooxygenase inhibitor, or SQ29548, a prostaglandin H2/thromboxane A2 receptor antagonist, restored acetylcholine relaxations of rings in elevated glucose to normal, while these agents had no effect on the relaxation of rings incubated in control glucose. Aortae incubated with mannose (44 mM) as a hyperosmotic control relaxed to acetylcholine normally. The relaxations in response to A23187 and sodium nitroprusside were not different between rings exposed to control and elevated glucose. Radioimmunoassay measurements showed a significant increase in acetylcholine-stimulated release of thromboxane A2 and prostaglandin F2 alpha in aortae with, but not without endothelium incubated with elevated, but not with control glucose. Thus a possible mechanism for endothelium dysfunction in diabetes mellitus is the hyperglycemia-induced increased generation of endothelium-derived vasoconstrictor prostanoids.

Authors

B Tesfamariam, M L Brown, D Deykin, R A Cohen

×

Full Text PDF

Download PDF (865.74 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts