Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Oxygen metabolites stimulate release of high-molecular-weight glycoconjugates by cell and organ cultures of rodent respiratory epithelium via an arachidonic acid-dependent mechanism.
K B Adler, … , W J Holden-Stauffer, J E Repine
K B Adler, … , W J Holden-Stauffer, J E Repine
Published January 1, 1990
Citation Information: J Clin Invest. 1990;85(1):75-85. https://doi.org/10.1172/JCI114436.
View: Text | PDF
Research Article

Oxygen metabolites stimulate release of high-molecular-weight glycoconjugates by cell and organ cultures of rodent respiratory epithelium via an arachidonic acid-dependent mechanism.

  • Text
  • PDF
Abstract

Several common pulmonary disorders characterized by mucus hypersecretion and airway obstruction may relate to increased levels of inhaled or endogenously generated oxidants (O2 metabolites) in the respiratory tract. We found that O2 metabolites stimulated release of high-molecular-weight glycoconjugates (HMG) by respiratory epithelial cells in vitro through a mechanism involving cyclooxygenase metabolism of arachidonic acid. Noncytolytic concentrations of chemically generated O2 metabolites (purine + xanthine oxidase) stimulated HMG release by cell and explant cultures of rodent airway epithelium, an effect which is inhibitable by coaddition of specific O2 metabolite scavengers or inhibitors of arachidonic acid metabolism. Addition of O2 metabolites to epithelial cells provoked production of PGF2a, an effect also inhibitable by coaddition of O2 metabolite scavengers or inhibitors of arachidonic acid metabolism. Finally, addition of exogenous PGF2a to cell cultures stimulated HMG release. We conclude that O2 metabolites increase release of respiratory HMG through a mechanism involving cyclooxygenase metabolism of arachidonic acid with production mainly of PGF2a. This mechanism may be fundamental to the pathogenesis of a variety of lung diseases associated with hypersecretion of mucus and/or other epithelial fluids, as well as a basic cellular response to increased oxidants.

Authors

K B Adler, W J Holden-Stauffer, J E Repine

×

Full Text PDF | Download (2.89 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts