Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114435

Differential regulation of right and left ventricular beta-adrenergic receptors in newborn lambs with experimental cyanotic heart disease.

D Bernstein, E Voss, S Huang, R Doshi, and C Crane

Department of Pediatrics, Stanford University, California 94305.

Find articles by Bernstein, D. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Stanford University, California 94305.

Find articles by Voss, E. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Stanford University, California 94305.

Find articles by Huang, S. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Stanford University, California 94305.

Find articles by Doshi, R. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Stanford University, California 94305.

Find articles by Crane, C. in: JCI | PubMed | Google Scholar

Published January 1, 1990 - More info

Published in Volume 85, Issue 1 on January 1, 1990
J Clin Invest. 1990;85(1):68–74. https://doi.org/10.1172/JCI114435.
© 1990 The American Society for Clinical Investigation
Published January 1, 1990 - Version history
View PDF
Abstract

To determine whether chronic hypoxemia secondary to an intracardiac right-to-left shunt alters regulation of the myocardial beta-adrenergic receptor/adenylate cyclase system, we produced chronic hypoxemia in nine newborn lambs by creating right ventricular outflow obstruction and an atrial septal defect. Oxygen saturation was reduced to 65-74% for 2 wk. Eight lambs served as normoxemic controls. beta-receptor density (Bmax) and ligand affinity (KD) were determined with the radio-ligand [125I]iodocyanopindolol and adenylate cyclase activity determined during stimulation with isoproterenol, sodium fluoride (NaF), and forskolin. During chronic hypoxemia, Bmax decreased 45% (hypoxemic, 180.6 +/- 31.5 vs. control, 330.5 +/- 60.1 fmol/mg) in the left ventricle (exposed to hypoxemia alone) but was unchanged in the right ventricle (exposed to hypoxemia and pressure overload). KD was not different from control in either ventricle. Left ventricular isoproterenol-stimulated adenylate cyclase activity was decreased by 39% (30.0 +/- 4.3% increase vs. 44.1 +/- 9.5% increase) whereas right ventricular adenylate cyclase activity was unchanged. Stimulation of adenylate cyclase with NaF or forskolin was not different from control in either ventricle. Circulating epinephrine was increased fourfold whereas circulating and myocardial norepinephrine were unchanged. These data demonstrate a down-regulation of the left ventricular beta-adrenergic receptor/adenylate cyclase system during chronic hypoxemia secondary to an intracardiac right-to-left shunt.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 68
page 68
icon of scanned page 69
page 69
icon of scanned page 70
page 70
icon of scanned page 71
page 71
icon of scanned page 72
page 72
icon of scanned page 73
page 73
icon of scanned page 74
page 74
Version history
  • Version 1 (January 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts