Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114418

Anti-DNA antibody production by CD5+ and CD5- B cells of patients with systemic lupus erythematosus.

N Suzuki, T Sakane, and E G Engleman

Department of Pathology, Stanford University, California 94305.

Find articles by Suzuki, N. in: JCI | PubMed | Google Scholar

Department of Pathology, Stanford University, California 94305.

Find articles by Sakane, T. in: JCI | PubMed | Google Scholar

Department of Pathology, Stanford University, California 94305.

Find articles by Engleman, E. in: JCI | PubMed | Google Scholar

Published January 1, 1990 - More info

Published in Volume 85, Issue 1 on January 1, 1990
J Clin Invest. 1990;85(1):238–247. https://doi.org/10.1172/JCI114418.
© 1990 The American Society for Clinical Investigation
Published January 1, 1990 - Version history
View PDF
Abstract

Although the presence of anti-DNA antibody is a hallmark of systemic lupus erythematosus (SLE), neither the subsets of B cells that secrete anti-DNA antibody nor the stimuli responsible for the induction of anti-DNA secretion is known. In particular, the role of CD5+ B cells in human SLE, a distinct subpopulation of antibody-secreting cells shown previously to be a source of anti-DNA antibody in murine models of SLE, is unknown. To approach these questions, we developed a sensitive enzyme-linked immunospot (ELIspot) assay to measure spontaneous secretion of antibody to single-stranded (ss) DNA, double-stranded (ds) DNA, tetanus toxoid, and polyclonal immunoglobulin (Ig) by purified CD5+ and CD5- B cells of 15 SLE patients and 15 healthy control subjects. The B cells of only 1 of 15 healthy subjects secreted a significant level of anti-ssDNA antibody, and none secreted anti-dsDNA. By contrast, in the majority of SLE patients both CD5+ and CD5- B cells secreted IgG and/or IgM anti-ssDNA as well as anti-dsDNA antibody. Further analysis of the anti-ssDNA response revealed that the level of IgG and IgM anti-DNA antibody secretion by CD5- B cells correlated closely with the level of polyclonal Ig production by the same subpopulation (r = 0.81 and 0.70, respectively). In contrast, production of anti-DNA by CD5+ B cells occurred independently of polyclonal Ig production by both CD5+ and CD5- B cell subpopulations. These results suggest that in human SLE there exist two anti-DNA antibody-producing B cell subpopulations with distinct induction mechanisms: one (CD5+), which independently secretes anti-DNA, and another (CD5-), which produces anti-DNA as an apparent consequence of polyclonal B cell activation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 238
page 238
icon of scanned page 239
page 239
icon of scanned page 240
page 240
icon of scanned page 241
page 241
icon of scanned page 242
page 242
icon of scanned page 243
page 243
icon of scanned page 244
page 244
icon of scanned page 245
page 245
icon of scanned page 246
page 246
icon of scanned page 247
page 247
Version history
  • Version 1 (January 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts