Abstract

In dietary phosphate (Pi) deprivation and in aging there is an inverse correlation between renal proximal tubular brush border membrane (BBM) cholesterol (Chol) content, BBM fluidity, and BBM sodium gradient-dependent Pi transport activity (Na-Pi cotransport). The purpose of this study was to determine whether in vitro enrichment of renal BBM with Chol has a direct modulating effect on Na-Pi cotransport. 12 and 24 mol % increases in Chol content caused dose-dependent decreases in Na-Pi cotransport activity, 2,000 in control, vs. 1,450 in Chol (+12%), vs. 900 pmol/5 s/mg BBM protein in Chol (+24%), all P less than 0.01, which was paralleled by dose-dependent increases in the fluorescence anisotropy of diphenylhexatriene, rDPH, i.e., decrease in BBM fluidity, 0.203 in control, vs. 0.210 in Chol (+12%), vs. 0.219 in Chol (+24%), all P less than 0.01. We found that increasing ambient temperature, which increases BBM fluidity independent of changes in Chol content, increased Na-Pi cotransport. When Na-Pi cotransport was analyzed as a function of BBM fluidity, 1/rDPH, we found that at an equivalent BBM fluidity BBM Chol enrichment still resulted in a dose-dependent decrease in Na-Pi cotransport. Finally, in BBM isolated from rats fed a low Pi diet in vitro enrichment with Chol completely reversed the adaptive increases in Na-Pi cotransport and fluidity. Our study therefore, indicates that Chol is a direct modulator of renal BBM Na-Pi cotransport activity, and that in vivo alterations in BBM Chol content most likely plays an important role in the regulation of renal tubular Pi transport.

Authors

M Levi, B M Baird, P V Wilson

×

Other pages: