Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Atrial natriuretic peptide attenuates the development of pulmonary hypertension in rats adapted to chronic hypoxia.
H Jin, … , R M Jackson, S Oparil
H Jin, … , R M Jackson, S Oparil
Published January 1, 1990
Citation Information: J Clin Invest. 1990;85(1):115-120. https://doi.org/10.1172/JCI114400.
View: Text | PDF
Research Article

Atrial natriuretic peptide attenuates the development of pulmonary hypertension in rats adapted to chronic hypoxia.

  • Text
  • PDF
Abstract

To test the hypothesis that chronic infusion of atrial natriuretic peptide (ANP) instituted before hypoxic exposure attenuates the development of pulmonary hypertension in hypoxia adapted rats, ANP (0.2 and 1.0 microgram/h) or vehicle was administered intravenously via osmotic minipump for 4 wk beginning before exposure to 10% O2 or to room air. Low dose ANP increased plasma ANP levels by only 60% of vehicle controls after 4 wk and significantly decreased mean pulmonary arterial pressure (MPAP) (P less than 0.01), the ratio of right ventricular weight to body weight (RV/BW) (P less than 0.01), and the wall thickness of small (50-100 microns) pulmonary arteries (P = 0.01) in hypoxia-adapted rats. ANP did not alter any of these parameters in air-control rats. High dose ANP increased plasma ANP levels by 230% of control and produced greater reductions in MPAP (P less than 0.001) and RV/BW) (P less than 0.05), but not in pulmonary arterial wall thickness, than the low dose. Neither dose of ANP altered mean systemic arterial pressure in either hypoxic or normoxic rats. The data demonstrate that chronic infusion of exogenous ANP at a dose that does not affect MPAP or RV weight in air-control rats attenuates the development of pulmonary hypertension and RV enlargement in rats adapted to chronic hypoxia.

Authors

H Jin, R H Yang, Y F Chen, R M Jackson, S Oparil

×

Full Text PDF

Download PDF (1.21 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts