Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114343

Alterations in 3,3'5'-triiodothyronine metabolism in response to propylthiouracil, dexamethasone, and thyroxine administration in man.

J S LoPresti, A Eigen, E Kaptein, K P Anderson, C A Spencer, and J T Nicoloff

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by LoPresti, J. in: PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Eigen, A. in: PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Kaptein, E. in: PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Anderson, K. in: PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Spencer, C. in: PubMed | Google Scholar

Department of Medicine, University of Southern California, School of Medicine, Los Angeles 90033.

Find articles by Nicoloff, J. in: PubMed | Google Scholar

Published November 1, 1989 - More info

Published in Volume 84, Issue 5 on November 1, 1989
J Clin Invest. 1989;84(5):1650–1656. https://doi.org/10.1172/JCI114343.
© 1989 The American Society for Clinical Investigation
Published November 1, 1989 - Version history
View PDF
Abstract

To elucidate the mechanisms involved in altering serum 3,3',5'-triiodothyronine (rT3) levels with absolute or relative low 3,5,3'-triiodothyronine (T3) states in man, agents capable of lowering circulating T3 levels were sequentially administered to six euthyroid subjects. These agents included propylthiouracil (PTU) (300 mg/6 h X 5 d), dexamethasone (DEX) (2 mg/6 h X 5 d), and thyroxine (T4) (3.0 mg load and 0.3 mg/d X 5 d). [125I] rT3 clearance rates and rT3 production rates were then determined. Increased serum rT3 levels and rT3/T4 values occurred with both PTU and DEX as compared with control, while T4 increased serum rT3 but did so without changing rT3/T4 values. The rT3 clearance rate was significantly decreased by PTU without altering production rate, while DEX increased the rT3 production rate without altering the rT3 clearance rate. T4 administration did not change rT3 clearance but proportionately increased rT3 production. These responses indicate that circulating rT3 predominantly originates from a non-PTU inhibitable deiodinase enzyme system located in extrahepatic tissues. This enzyme system appears to have a high capacity and low affinity for T4 and can be stimulated by DEX administration.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1650
page 1650
icon of scanned page 1651
page 1651
icon of scanned page 1652
page 1652
icon of scanned page 1653
page 1653
icon of scanned page 1654
page 1654
icon of scanned page 1655
page 1655
icon of scanned page 1656
page 1656
Version history
  • Version 1 (November 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts