Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114340

Marked QRS complex abnormalities and sodium channel blockade by propoxyphene reversed with lidocaine.

D C Whitcomb, F R Gilliam 3rd, C F Starmer, and A O Grant

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Whitcomb, D. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Gilliam, F. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Starmer, C. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Find articles by Grant, A. in: PubMed | Google Scholar

Published November 1, 1989 - More info

Published in Volume 84, Issue 5 on November 1, 1989
J Clin Invest. 1989;84(5):1629–1636. https://doi.org/10.1172/JCI114340.
© 1989 The American Society for Clinical Investigation
Published November 1, 1989 - Version history
View PDF
Abstract

The opiate analgesic propoxyphene produces cardiac toxicity when taken in overdose. We recently observed a patient with propoxyphene overdose in whom marked QRS widening was reversed by lidocaine. The reversal is apparently paradoxical as both agents block the inward sodium current (INa). We examined possible mechanisms of the reversal by measuring INa in rabbit atrial myocytes during exposure to propoxyphene and the combination of propoxyphene and lidocaine (60 and 80 microM, respectively). Propoxyphene caused use-dependent block of INa during pulse train stimulation. Block recovered slowly with time constants of 20.8 +/- 3.9 s. Block during lidocaine exposure recovered with time constants of 2-3 s. During exposure to the mixture, block recovered as a double exponential. The half time for recovery during exposure to the mixture was 1.6 +/- .9 s compared with a half-time of 14.3 +/- 2.9 s during exposure to propoxyphene alone. During pulse train stimulation, less steady-state block was observed during exposure to the mixture than during exposure to propoxyphene alone when the interval between pulses was greater than 0.95 s. Both drugs compete for a common receptor during the polarizing phase. The more rapid dissociation of lidocaine during the recovery period leads to less block during the mixture than during exposure to propoxyphene alone. The experiments suggest a mechanism for reversal of the cardiac toxicity of drugs which have slow unbinding kinetics.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1629
page 1629
icon of scanned page 1630
page 1630
icon of scanned page 1631
page 1631
icon of scanned page 1632
page 1632
icon of scanned page 1633
page 1633
icon of scanned page 1634
page 1634
icon of scanned page 1635
page 1635
icon of scanned page 1636
page 1636
Version history
  • Version 1 (November 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts