Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114332

Synthesis of stress proteins is increased in individuals with homozygous PiZZ alpha 1-antitrypsin deficiency and liver disease.

D H Perlmutter, M J Schlesinger, J A Pierce, P I Punsal, and A L Schwartz

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Perlmutter, D. in: PubMed | Google Scholar

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Schlesinger, M. in: PubMed | Google Scholar

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Pierce, J. in: PubMed | Google Scholar

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Punsal, P. in: PubMed | Google Scholar

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Schwartz, A. in: PubMed | Google Scholar

Published November 1, 1989 - More info

Published in Volume 84, Issue 5 on November 1, 1989
J Clin Invest. 1989;84(5):1555–1561. https://doi.org/10.1172/JCI114332.
© 1989 The American Society for Clinical Investigation
Published November 1, 1989 - Version history
View PDF
Abstract

Individuals who are homozygous for the protease inhibitor phenotype Z (PiZ) genetic variant of alpha 1-antitrypsin (alpha 1-AT) have reduced plasma concentrations of alpha 1-AT, and are susceptible to premature development of pulmonary emphysema. A subset of this population develops chronic liver disease. The reduction in plasma concentrations of alpha 1-AT results from a selective defect in secretion as the abnormal PiZ alpha 1-AT protein accumulates within the cell. It has recently been shown in several experimental systems that the heat shock/stress response, a response characterized by the synthesis of a family of highly evolutionarily conserved proteins during thermal or chemical stress, may also be activated by the presence of abnormal proteins within the cell. Therefore, we predicted that the heat shock/stress response would be induced in the absence of thermal or chemical stress in alpha 1-AT-synthesizing cells of PiZZ individuals. In the following study, however, we show that net synthesis of proteins in the heat shock/stress gene family (SP90, SP70, ubiquitin) is increased only in a subset of the population, PiZZ individuals with liver disease. It is not significantly increased in PiZZ individuals with emphysema or in those without apparent tissue injury. Net synthesis of stress proteins is not increased in individuals with another variant of the alpha 1-AT gene (PiS alpha 1-AT) and is not increased in individuals with severe liver disease but a normal alpha 1-AT haplotype (PiM alpha 1-AT). These results demonstrate that the synthesis of stress proteins is increased in a subset of individuals with homozygous PiZZ alpha 1-AT deficiency, those also having liver disease.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1555
page 1555
icon of scanned page 1556
page 1556
icon of scanned page 1557
page 1557
icon of scanned page 1558
page 1558
icon of scanned page 1559
page 1559
icon of scanned page 1560
page 1560
icon of scanned page 1561
page 1561
Version history
  • Version 1 (November 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts