Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114327

Pathogenesis of Shigella diarrhea. XVI. Selective targetting of Shiga toxin to villus cells of rabbit jejunum explains the effect of the toxin on intestinal electrolyte transport.

G Kandel, A Donohue-Rolfe, M Donowitz, and G T Keusch

Department of Medicine, New England Medical Center/Tufts University School of Medicine, Boston, Massachusetts 02111.

Find articles by Kandel, G. in: PubMed | Google Scholar

Department of Medicine, New England Medical Center/Tufts University School of Medicine, Boston, Massachusetts 02111.

Find articles by Donohue-Rolfe, A. in: PubMed | Google Scholar

Department of Medicine, New England Medical Center/Tufts University School of Medicine, Boston, Massachusetts 02111.

Find articles by Donowitz, M. in: PubMed | Google Scholar

Department of Medicine, New England Medical Center/Tufts University School of Medicine, Boston, Massachusetts 02111.

Find articles by Keusch, G. in: PubMed | Google Scholar

Published November 1, 1989 - More info

Published in Volume 84, Issue 5 on November 1, 1989
J Clin Invest. 1989;84(5):1509–1517. https://doi.org/10.1172/JCI114327.
© 1989 The American Society for Clinical Investigation
Published November 1, 1989 - Version history
View PDF
Abstract

To examine the mechanism by which Shiga toxin alters intestinal water and electrolyte transport, ligated loops of rabbit jejunum were incubated in vivo with purified toxin and then studied in vivo by single pass perfusion and in vitro by the Ussing chamber voltage-clamp technique. Toxin exposure led to accumulation of water in the jejunal lumen, associated with decreased active basal NaCl absorption. Glucose- and alanine-stimulated Na absorption were also reduced, while toxin had no effect on either basal short-circuit current or the secretory response to theophylline. These observations suggest that Shiga toxin selectively inhibits NaCl absorption without significantly altering active anion secretion. To localize the cellular site of toxin action, populations of villus and crypt cells from rabbit jejunum were isolated and studied. Villus cells had a greater content of the glycolipid Shiga toxin receptor, Gb3, had more toxin binding sites than did crypt cells, and were much more sensitive than crypt cells to toxin-induced inhibition of protein synthesis. These experiments demonstrate that purified Shiga toxin inhibits jejunal fluid absorption without affecting active fluid secretion by a preferential effect on villus cells. The results suggest that this is due to the differential distribution of toxin receptors on villus compared to crypt cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1509
page 1509
icon of scanned page 1510
page 1510
icon of scanned page 1511
page 1511
icon of scanned page 1512
page 1512
icon of scanned page 1513
page 1513
icon of scanned page 1514
page 1514
icon of scanned page 1515
page 1515
icon of scanned page 1516
page 1516
icon of scanned page 1517
page 1517
Version history
  • Version 1 (November 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts