Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114323

Sulfated beef insulin treatment elicits CD8+ T cells that may abrogate immunologic insulin resistance in type I diabetes.

P Naquet, J Ellis, A Kenshole, J W Semple, and T L Delovitch

Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.

Find articles by Naquet, P. in: PubMed | Google Scholar

Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.

Find articles by Ellis, J. in: PubMed | Google Scholar

Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.

Find articles by Kenshole, A. in: PubMed | Google Scholar

Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.

Find articles by Semple, J. in: PubMed | Google Scholar

Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.

Find articles by Delovitch, T. in: PubMed | Google Scholar

Published November 1, 1989 - More info

Published in Volume 84, Issue 5 on November 1, 1989
J Clin Invest. 1989;84(5):1479–1487. https://doi.org/10.1172/JCI114323.
© 1989 The American Society for Clinical Investigation
Published November 1, 1989 - Version history
View PDF
Abstract

The in vitro responses of T cells from 13 insulin-nonresistant and 1 immunologically insulin-resistant (IIR) type I diabetes patients to sulfated beef insulin (SBI) were analyzed. Insulin A-loop specific CD4+ T cells from these patients did not respond to SBI. After 1 yr of treatment with SBI the IIR patient's T cell and antibody responses to beef, pork, and human insulin progressed from very high to nondetectable levels. This occurred in parallel to the appearance of her insulin-specific CD8+ T cells, which inhibited the response of her A-loop-specific CD4+ T cells to insulin. A transient increase in her CD8+ anti-insulin antibody activity coincided with a relative lack of her CD8+ T cell activity. CD8+ T cells that regulate T cell responsiveness to insulin are probably present but difficult to detect in most type I diabetes patients. These T cells were identified in only 2 of 13 insulin-nonresistant patients who presented with lipoatrophy and insulin allergy, respectively, and who possessed high-titered, anti-insulin antibodies. Our data demonstrate that CD8+ T cells play an important role in controlling peripheral tolerance to insulin and may abrogate IIR in a diabetic patient treated with SBI.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1479
page 1479
icon of scanned page 1480
page 1480
icon of scanned page 1481
page 1481
icon of scanned page 1482
page 1482
icon of scanned page 1483
page 1483
icon of scanned page 1484
page 1484
icon of scanned page 1485
page 1485
icon of scanned page 1486
page 1486
icon of scanned page 1487
page 1487
Version history
  • Version 1 (November 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts