Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Cloning and characterization of complementary DNA for human tryptase.
J S Miller, … , E H Westin, L B Schwartz
J S Miller, … , E H Westin, L B Schwartz
Published October 1, 1989
Citation Information: J Clin Invest. 1989;84(4):1188-1195. https://doi.org/10.1172/JCI114284.
View: Text | PDF
Research Article

Cloning and characterization of complementary DNA for human tryptase.

  • Text
  • PDF
Abstract

The amino acid sequence of human mast cell tryptase was determined from corresponding cDNA cloned from a lambda ZAP library made with mRNA derived from a human mast cell preparation. Tryptase is the major neutral protease present in human mast cells and serves as a specific marker of mast cells by immunohistologic techniques and as a specific indicator of mast cell activation when detected in biologic fluids. Based on nucleic acid sequence, human tryptase consists of a 244-amino acid catalytic portion of 27,423 D with two putative N-linked carbohydrate binding sites and a 30-amino acid leader sequence of 3,048 D. A His74, Asp120, Ser223 catalytic triad and four cystine groups were identified by analogy to other serine proteases. Regions of amino acid sequence that are highly conserved in serine proteases, in general, were conserved in tryptase. The catalytic portion of human tryptase had an 84% amino acid sequence similarity with that of dog tryptase; their leader sequences had a 67% similarity. Asp217 in the substrate binding pocket of human tryptase is consistent with a specificity for Arg and Lys residues at the site of cleavage (P1), whereas Glu245 is consistent with the known preference of human tryptase for substrates with Arg or Lys also at P3, analogous residues also being present in dog tryptase. Asp244, which is substituted for the Gly found in dog tryptase and in most serine proteases, is present in the putative substrate binding pocket and may confer additional substrate specificity on human tryptase for basic residues. Further studies now can be designed to elucidate these structure-function relationships.

Authors

J S Miller, E H Westin, L B Schwartz

×

Full Text PDF | Download (1.59 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts