Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114279

Plasma binding and transport of diazepam across the blood-brain barrier. No evidence for in vivo enhanced dissociation.

R K Dubey, C B McAllister, M Inoue, and G R Wilkinson

Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.

Find articles by Dubey, R. in: JCI | PubMed | Google Scholar

Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.

Find articles by McAllister, C. in: JCI | PubMed | Google Scholar

Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.

Find articles by Inoue, M. in: JCI | PubMed | Google Scholar

Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.

Find articles by Wilkinson, G. in: JCI | PubMed | Google Scholar

Published October 1, 1989 - More info

Published in Volume 84, Issue 4 on October 1, 1989
J Clin Invest. 1989;84(4):1155–1159. https://doi.org/10.1172/JCI114279.
© 1989 The American Society for Clinical Investigation
Published October 1, 1989 - Version history
View PDF
Abstract

The tissue uptake of extensively plasma-bound compounds is reportedly inconsistent with the conventional free-drug hypothesis limiting transport to unbound moiety in rapid intracapillary equilibrium with bound complex. Instead, protein-mediated/cell surface enhancement of dissociation has been postulated to occur in the microvasculature. This possibility was investigated by studying the passive transport of diazepam across the blood-brain barrier. Microdialysis probes placed within the vena cava and brain cortex were used to directly compare steady-state, interstitial unbound diazepam levels in both Wistar and genetically analbuminemic rats. The absence of albumin in the latter increased the unbound fraction of diazepam by almost fivefold; however, in both groups, the ratio of unbound concentrations in brain and blood at equilibrium was equal to unity. If enhanced dissociation occurred in the microvasculature, then the unbound brain level should have been greater than that in the systemic circulation. It is probable that earlier findings suggestive of protein-mediated transport reflect a nonequilibrium phenomenon. Comparison of the extent of diazepam's in vivo binding in blood by microdialysis to that estimated in vitro using conventional equilibrium dialysis with microcells showed good agreement, thus validating a widely accepted assumption of equivalency of these two values.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1155
page 1155
icon of scanned page 1156
page 1156
icon of scanned page 1157
page 1157
icon of scanned page 1158
page 1158
icon of scanned page 1159
page 1159
Version history
  • Version 1 (October 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts