Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A physiologic role for somatostatin 28 as a regulator of insulin secretion.
D A D'Alessio, … , C Beglinger, J W Ensinck
D A D'Alessio, … , C Beglinger, J W Ensinck
Published September 1, 1989
Citation Information: J Clin Invest. 1989;84(3):857-862. https://doi.org/10.1172/JCI114246.
View: Text | PDF
Research Article

A physiologic role for somatostatin 28 as a regulator of insulin secretion.

  • Text
  • PDF
Abstract

Somatostatin 28 (S-28) is a peptide produced in the intestinal tract which rises in the circulation during nutrient absorption. We tested the hypothesis that S-28 regulates B-cell function by (a) studying the effects on insulin secretion of "physiologic" infusions of S-28 and (b) measuring insulin responses during elevated nutrient-stimulated endogenous S-28 levels. (a) Synthetic S-28 was infused on separate days into six healthy men at rates of 25 and 50 ng/kg per h which mimicked postprandial levels. Subjects were given a bolus of glucose (0.1 g/kg) after 120 min. Insulin responses during S-28 infusions were compared to a control study using a saline infusion in the same individuals. Glucose-stimulated insulin secretion was inhibited during the infusion of 50 ng/kg per h S-28 when compared to control (P less than 0.05). (b) Insulin secretion during elevations of endogenous S-28 was studied in healthy men who received a bolus of 2.5 g arginine (n = 14) or 25 U of secretin (n = 8) 120 min after swallowing 50 g fat, or, on a separate day, an equivalent volume of water. S-28 levels rose significantly after fat ingestion but did not change after water. Arginine and secretin-stimulated insulin secretion was inhibited following ingestion of fat compared with intake of water (P less than 0.05). Arginine-enhanced glucagon secretion was not changed by fat ingestion. We conclude that elevations in plasma S-28 levels, occurring during the postprandial state, attenuate B-cell secretion and this peptide may be a physiologic modulator of nutrient-stimulated insulin release.

Authors

D A D'Alessio, C Sieber, C Beglinger, J W Ensinck

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 121 12
PDF 47 15
Scanned page 205 2
Citation downloads 54 0
Totals 427 29
Total Views 456
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts