Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114209

Endothelin-induced increases in vascular smooth muscle Ca2+ do not depend on dihydropyridine-sensitive Ca2+ channels.

T Mitsuhashi, R C Morris Jr, and H E Ives

Cardiovascular Research Institute, University of California, San Francisco 94143.

Find articles by Mitsuhashi, T. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143.

Find articles by Morris, R. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143.

Find articles by Ives, H. in: PubMed | Google Scholar

Published August 1, 1989 - More info

Published in Volume 84, Issue 2 on August 1, 1989
J Clin Invest. 1989;84(2):635–639. https://doi.org/10.1172/JCI114209.
© 1989 The American Society for Clinical Investigation
Published August 1, 1989 - Version history
View PDF
Abstract

Endothelin is a potent mammalian vasoconstrictive peptide with structural homology to cation channel-binding insect toxins. We tested the proposal that this peptide directly activates dihydropyridine-sensitive Ca2+ channels in cultured vascular smooth muscle (VSM) cells. First, we found that cell Ca2+ can be altered in VSM by activation of voltage-operated Ca2+ channels. KCl-induced depolarization and the dihydropyridine Ca2+ channel agonist (-) Bay K 8644 (10 microM) both raised cell Ca2+ more than twofold; the effect of KCl was blocked by the inhibitory enantiomer, (+) Bay K 8644 (40 microM). Similar responses were observed in Chinese hamster ovary (CHO) cells. Synthetic endothelin (4 x 10(-8) M) raised Ca2+ in VSM but not CHO cells from 100 +/- 17 to 561 +/- 34 nM within 12 s. Ca2+ subsequently fell to basal levels after 30 min. Half maximal Ca2+ response was at 4 x 10(-9) M endothelin. Unlike endothelin, thrombin raised Ca2+ in both VSM and CHO cells. The Ca2+ responses to endothelin and thrombin were not affected by nicardipine (1 microM), (+) Bay K 8644, or Ca2+-free solutions. Lastly, both hormones caused release of inositol phosphates in VSM cells. However, the response to thrombin was more than 10-fold larger and was more rapid than the response to endothelin; the thrombin response was sensitive to pertussis toxin, while the response to endothelin was not. Thus endothelin, like thrombin, raises cell Ca2+ in VSM by mobilization of intracellular stores and not by activation of dihydropyridine-sensitive Ca2+ channels. However, their receptors are distinct and they exhibit important differences in signal transduction.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 635
page 635
icon of scanned page 636
page 636
icon of scanned page 637
page 637
icon of scanned page 638
page 638
icon of scanned page 639
page 639
Version history
  • Version 1 (August 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts