Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114207

Regulation by fasting of rat insulin-like growth factor I and its receptor. Effects on gene expression and binding.

W L Lowe Jr, M Adamo, H Werner, C T Roberts Jr, and D LeRoith

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

Find articles by Lowe, W. in: PubMed | Google Scholar

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

Find articles by Adamo, M. in: PubMed | Google Scholar

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

Find articles by Werner, H. in: PubMed | Google Scholar

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

Find articles by Roberts, C. in: PubMed | Google Scholar

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

Find articles by LeRoith, D. in: PubMed | Google Scholar

Published August 1, 1989 - More info

Published in Volume 84, Issue 2 on August 1, 1989
J Clin Invest. 1989;84(2):619–626. https://doi.org/10.1172/JCI114207.
© 1989 The American Society for Clinical Investigation
Published August 1, 1989 - Version history
View PDF
Abstract

We have examined, in liver and extrahepatic tissues, the effects of fasting on total insulin-like growth factor I (IGF-I) mRNA levels, on levels of different IGF-I mRNAs generated by alternative splicing of the primary IGF-I transcript, and on IGF-I receptor binding and mRNA levels. A 48-h fast decreased total IGF-I mRNA levels by approximately 80% in lung and liver, approximately 60% in kidney and muscle, and only approximately 30-40% in stomach, brain, and testes. In heart, IGF-I mRNA levels did not change. The levels of the different splicing variants, however, were essentially coordinately regulated within a given tissue. Specific 125I-IGF-I binding in lung, testes, stomach, kidney, and heart was increased by fasting by approximately 30-100%, whereas in brain 125I-IGF-I binding did not change in response to fasting. In tissues in which fasting increased IGF-I receptor number, receptor mRNA levels increased approximately 1.6- to 2.5-fold, whereas when IGF-I receptor number was unchanged in response to fasting, receptor mRNA levels did not change. These data demonstrate that the change in IGF-I and IGF-I receptor mRNA levels during fasting is quantitatively different in different tissues and suggest that regulation of IGF-I and IGF-I receptor gene expression by fasting is discoordinate.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 619
page 619
icon of scanned page 620
page 620
icon of scanned page 621
page 621
icon of scanned page 622
page 622
icon of scanned page 623
page 623
icon of scanned page 624
page 624
icon of scanned page 625
page 625
icon of scanned page 626
page 626
Version history
  • Version 1 (August 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts