Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro.
C W Smith, … , C Toman, D C Anderson
C W Smith, … , C Toman, D C Anderson
Published June 1, 1989
Citation Information: J Clin Invest. 1989;83(6):2008-2017. https://doi.org/10.1172/JCI114111.
View: Text | PDF
Research Article

Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro.

  • Text
  • PDF
Abstract

The adherence of human neutrophils to human umbilical vein endothelial cells (HUVEC) is partially dependent on the CD11/CD18 family of glycoproteins on the neutrophil and ICAM-1 on the HUVEC. The CD18 heterodimer involved in this adherence was evaluated in vitro using subunit-specific monoclonal antibodies (MAbs). The adherence of unstimulated neutrophils to IL-1-stimulated HUVEC was significantly inhibited by anti-CD11a but not CD11b MAbs, while the adherence of fMLP-stimulated neutrophils was significantly inhibited by both anti-CD11a and -CD11b. Anti-CD11a, but not anti-CD11b MAbs, reduced the adherence of unstimulated neutrophils on purified ICAM-1 to the same low level untreated neutrophils exhibited on a control protein, glycophorin. Stimulation with fMLP significantly increased neutrophil attachment to purified ICAM-1, but not to the control protein. Anti-CD11b MAbs reduced this chemotactically augmented adherence to that of unstimulated neutrophils, and in combination with anti-CD11a MAbs reduced adherence to that on the control protein. The results in this report indicate that unstimulated neutrophils exhibit LFA-1-dependent attachment to ICAM-1, and chemotactic stimulation enhances the attachment of human neutrophils to ICAM-1 by a Mac-1-dependent process.

Authors

C W Smith, S D Marlin, R Rothlein, C Toman, D C Anderson

×

Full Text PDF | Download (3.24 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts