Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114104

Elevated intracellular Ca2+ acts through protein kinase C to regulate rabbit ileal NaCl absorption. Evidence for sequential control by Ca2+/calmodulin and protein kinase C.

M Donowitz, M E Cohen, M Gould, and G W Sharp

Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts.

Find articles by Donowitz, M. in: JCI | PubMed | Google Scholar

Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts.

Find articles by Cohen, M. in: JCI | PubMed | Google Scholar

Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts.

Find articles by Gould, M. in: JCI | PubMed | Google Scholar

Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts.

Find articles by Sharp, G. in: JCI | PubMed | Google Scholar

Published June 1, 1989 - More info

Published in Volume 83, Issue 6 on June 1, 1989
J Clin Invest. 1989;83(6):1953–1962. https://doi.org/10.1172/JCI114104.
© 1989 The American Society for Clinical Investigation
Published June 1, 1989 - Version history
View PDF
Abstract

Calcium/calmodulin is involved in the regulation of basal rabbit ileal active Na and Cl absorption, but the mechanism by which elevated intracellular Ca2+ affects Na and Cl transport is unknown. To investigate the roles of the Ca2+/calmodulin and protein kinase C systems in ileal NaCl transport, two drugs, the isoquinolenesulfonamide, H-7, and the naphthalenesulfonamide, W13, were used in concentrations that conferred specificity in the antagonism of protein kinase C (60 microM H-7) and Ca2+/calmodulin (45 microM W13), respectively, as determined using phosphorylation assays in ileal villus cells. W13 but not H-7 stimulated basal active NaCl absorption. H-7 inhibited changes in Na and Cl absorption caused by maximal concentrations of Ca2+ ionophore A23187 and carbachol and serotonin, secretagogues that act by increasing cytosol Ca2+, while W13 had no effect. In contrast, neither H-7 nor W13 altered the change in NaCl transport caused by the cyclic nucleotides 8-Br-cAMP and 8-Br-cGMP. These data suggest that: (a) basal rabbit ileal NaCl absorption is regulated by the Ca2+/calmodulin complex and not by protein kinase C; (b) the effect of elevating intracellular Ca2+ to decrease NaCl absorption is mediated via protein kinase C but not by Ca2+/calmodulin; (c) the effects of protein kinase C are not overlapping or synergistic with those of Ca2+/calmodulin on either basal absorption or on the effects of increased Ca2+; and (d) neither Ca2+/calmodulin nor protein kinase C are involved in the effects of cAMP and cGMP on ileal active NaCl transport.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1953
page 1953
icon of scanned page 1954
page 1954
icon of scanned page 1955
page 1955
icon of scanned page 1956
page 1956
icon of scanned page 1957
page 1957
icon of scanned page 1958
page 1958
icon of scanned page 1959
page 1959
icon of scanned page 1960
page 1960
icon of scanned page 1961
page 1961
icon of scanned page 1962
page 1962
Version history
  • Version 1 (June 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts